ВНУТРИСЕРДЕЧНОЕ ДАВЛЕНИЕ

ВНУТРИСЕРДЕЧНОЕ ДАВЛЕНИЕ

ВНУТРИСЕРДЕЧНОЕ ДАВЛЕНИЕ — давление в полостях сердца, возникающее в процессе его ритмической деятельности. Величина В. д. различна для каждой камеры сердца и изменяется в разные моменты сердечного цикла. Она зависит от степени кровенаполнения камер, сократительной функции миокарда и величины сопротивления путей оттока крови, а также ряда других кардиальных и экстракардиальных факторов — радиуса кривизны камер сердца, степени натяжения соединительнотканной основы сердца, внутригрудного давления.
Регистрация изменений В. д. во времени в виде кривых давления в полостях сердца позволяет охарактеризовать состояние внутрисердечной гемодинамики и кровообращения в целом и получить необходимую информацию о степени и характере нарушений насосной функции сердца при различных патологических состояниях (см. Кровообращение).

Большинство авторов на кривой давления в предсердии выделяет три положительные волны — а, с и v и две отрицательные волны (коллапса) — х и у (рис.). Начало волны а по времени совпадает с серединой или последней третью зубца P на ЭКГ. При нарушениях систолической деятельности предсердий, что имеет место, напр., у больных с мерцательной аритмией, волна а на кривой давления отсутствует. Волна с возникает в момент закрытия атрио-вентрикулярных клапанов, т.е. в начале систолы желудочка. Причина возникновения волны с — толчкообразное выпячивание митрального клапана в предсердие в начале изометрического сокращения желудочка. Волна х связана с понижением давления и по времени соответствует периоду расслабления миокарда предсердия. Основной причиной появления волны х считается увеличение объема предсердий вследствие расслабления мышечных волокон. За время волны х давление в предсердии достигает атмосферного или снижается на несколько миллиметров ртутного столба. В дальнейшем волна х сменяется волной v, к-рая обусловлена увеличением притока крови в предсердия из легочных и полых вен. Волна у следует после пика волны v и ее начало во времени совпадает с моментом открытия атрио-вентрикулярных клапанов и началом диастолического наполнения желудочков. В этот период внутрипредсердное давление снижается параллельно со снижением давления в левом желудочке до конечного диастолического давления (конечное диастолическое давление — давление в полостях желудочков непосредственно перед закрытием атрио-вентрикулярных клапанов). За волной у следует полого возрастающая часть кривой внутрипредсердной давления. Для заполнения кровью левого предсердия, упруго-эластические свойства к-рого более высоки, чем правого предсердия, необходимо более высокое давление. Согласно имеющимся в литературе данным, полученным при зондировании сердца здоровых людей, в левом предсердии средняя величина волны а составляет 10—11 мм рт. ст., волны v —12 —14 мм рт. ст. Среднее давление в левом предсердии, равное интегральной величине всех колебаний, находится в диапазоне 8—9 мм рт. ст., в правом предсердии — составляет 3 мм рт. ст.
В экспериментах установлено, что кривая зависимости внутрипредсердного давления от объема наполнения предсердий сохраняет линейный характер до 9—11 мм рт. ст. При дальнейшем увеличении объема прирост внутрипредсердного давления происходит в значительно большей степени.
Для анализа сердечного цикла в основном исследуют длительность отдельных его фаз и определяют среднюю и максимальную скорость изменения давления в полостях желудочков в периоды изометрического напряжения и релаксации. Систола желудочков начинается фазой асинхронного сокращения, в течение к-рой происходит последовательное вовлечение отдельных участков миокарда левого и правого желудочков в сократительный процесс. В эту фазу происходит изменение конфигурации полости желудочков при незначительном увеличении внутрижелудочкового давления. Фаза изометрического сокращения начинается с момента закрытия атрио-вентрикулярных клапанов. Подъем кривой внутрижелудочкового давления в эту фазу наиболее крутой и прерывается небольшим изгибом или зазубриной, которые отражают открытие соответствующих полулунных клапанов и во времени совпадают с началом периода изгнания крови в аорту или легочную артерию. Следующий период — период изгнания, подразделяется на фазы максимального и редуцированного изгнания. В фазу максимального изгнания, к-рая в норме начинается с момента открытия соответствующих полулунных клапанов и по продолжительности соответствует 1/3 всего периода изгнания, выбрасывается 2/3 ударного объема крови.
Систола желудочков заканчивается фазой редуцированного изгнания. В этот период давление в желудочках постепенно снижается, достигая уровня давления в аорте и легочной артерии.
Диастола желудочков начинается коротким протодиастолическим периодом, который соответствует времени, необходимому для закрытия полулунных клапанов, и обычно на кривой внутрижелудочкового давления проявляется отдельным зубцом на нисходящем колене. В фазу изометрического расслабления, наступающую с момента закрытия полулунных клапанов и продолжающуюся до открытия атрио-вентрикулярных клапанов, происходит быстрое снижение внутрижелудочкового давления до уровня предсердного. В момент уравнивания давления в предсердиях и желудочках происходит открытие атрио-вентрикулярных клапанов и начинается период быстрого наполнения желудочков. С этого момента форма кривой, отражающей изменение давления в желудочке, существенно не отличается от формы кривой, отражающей изменение давления в предсердии. В правом желудочке систолическое давление в среднем равно 25 мм рт. ст., диастолическое. — 2 мм рт. ст.; в левом желудочке соответственно — 120 и 4 мм рт. ст.
При клинической оценке данных, полученных с помощью метода прямой катетеризации сердца (см.), одним из признаков нарушения сократительного состояния миокарда может служить увеличение конечно-диастолического давления в левом желудочке св. 12 мм рт. ст., в правом — св. 5 мм рт. ст. Однако эти данные не имеют абсолютного значения, т. к. уровень конечно-диастолического давления в желудочках зависит от нескольких факторов. Так, повышение конечно-диастоли-ческого внутрижелудочкового давления может быть обусловлено гипертрофией миокарда, повышением ригидности его стенок, вызванной увеличением сопротивления пути оттока из желудочка; возрастанием диастолического наполнения желудочков при дефекте клапанов или врожденных пороках сердца с шунтированием. Наряду с этим существуют многочисленные клинические наблюдения, в которых показано, что резкая дилатация полости желудочка, сочетающаяся с выраженным снижением сократительной способности миокарда, может протекать при нормальных цифрах конечно-диастолического давления.
Из сказанного следует, что прогностическое значение величины конечно-диастолического внутрижелудочкового давления ограничено и может иметь значение в сочетании с другими гемодинамическими показателями (см. Кровообращение). Наиболее точную информацию о функциональном состоянии сократительного аппарата сердечной мышцы дают показатели скорости укорочения мышечных волокон. При этом установлено, что механизм инотропии, регулирующий силу и скорость сокращения сердечной мышцы, в определенном диапазоне изменения предъявляемых к миокарду желудочка нагрузок может реализовать свое влияние без изменения исходной длины мышечных волокон. Все сказанное выше послужило основой для введения в клиническую практику ряда показателей, позволяющих непосредственно оценивать сократительное состояние миокарда по результатам внутрижелудочкового зондирования (внутрисистолический показатель, время напряжения и др.)
Получен ряд дополнительных сведений, позволяющих установить более тесную зависимость между внутрижелудочковым давлением и состоянием миокарда.
Установлено, что наиболее точным показателем (индексом) сократительной способности миокарда является отношение максимальной скорости повышения давления в желудочке в фазу изометрического сокращения к величине внутрижелудочкового давления в момент максимальной скорости его нарастания. В условиях изоволюмического состояния желудочков скорость укорочения сократительных элементов мышечных волокон равна скорости удлинения последовательно с ними соединенных упругих (реактивных) элементов. При неизменной величине модуля упругости реактивных элементов (по данным большинства авторов он равен 28) с помощью математических преобразований можно получить уравнение зависимости скорости сокращения миофибрилл в изометрической фазе сердечного цикла от величины внутрижелудочкового давления Vсэ = (dp/dt)/(K*P), где Vсэ — скорость сокращения миофибрилл; К — эмпирически вычисляемый модуль упругости, равный 28; dp/dt — мгновенная скорость изменения внутрижелудочкового давления, а P — величина внутрижелудочкового давления, соответствующая этой скорости.
Применение вычислительных машин (при постоянной регистрации величины и скорости изменения внутрижелудочкового давления) позволяет построить кривую изменения скорости укорочения сократительных элементов миокарда, что дает весьма ценную дополнительную информацию о состоянии сердечной мышцы.
Исключительно важным для оценки биомеханики сердца является знание природы диастолического расслабления миокарда. Согласно биофиз, представлениям о мышечном сокращении смена систолического напряжения миофибрилл диастолической релаксацией обеспечивается активным, связанным с затратой энергии освобождением миофибрилл от ионов кальция. Максимальная скорость диастолической релаксации желудочков может служить показателем эффективности функционирования внутриклеточной системы, осуществляющей связывание кальция.
Для получения достаточно полного представления о состоянии внутрисердечной гемодинамики необходимо знать следующие показатели: величину каждой волны и среднее давление в предсердиях, максимальное систолическое давление, минимальное диастолическое давление в желудочках и конечно-диастолическое давление в них.
В клин, практике измерение и регистрацию В. д. чаще всего применяют для дифференциальной диагностики пороков сердца (см.), оценки гипертензии малого круга кровообращения (см.), выявления ранних или латентных стадий сердечно-сосудистой недостаточности (см.) различного происхождения.
Приборы для измерения внутрисердечного давления представляют собой манометры (электроманометры), чувствительный элемент которых непосредственно воспринимает изменения давления в исследуемой области. Для этой цели он либо сообщается через катетер с исследуемой полостью, либо непосредственно вводится в эту полость (см. Катетеризация сердца). Приборы для измерения В. д. относятся к приборам прямого измерения кровяного давления (см. Сердце, инструментальные методы исследования). Измеряемой величиной обычно является мгновенное значение давления в определенной точке, или среднее (среднее динамическое), или максимальное и минимальное значения давления в течение сердечного цикла.
Первым прибором, позволяющим удовлетворительно регистрировать В. д., был оптический манометр Франка, с помощью к-рого Франк (О. Frank) в 1906—1910 гг. получил первые записи давления в полостях сердца. С помощью этого прибора Уиггерс (С. Wiggers, 1921) записал В. д. и давление в магистральных сосудах, что дало ему возможность детально описать структуру сердечного цикла. С помощью оптического манометра, разработанного в 1934 г. Хамилтоном (W. Hamilton), Курнан (A. Cournand) записал В. д. у человека (Курнан предложил использовать катетер для измерения В. д.).
С 40-х годов для измерения В. д. используются электронные манометры (электроманометры): емкостные Лилли (Lilly, 1942) и Хансен (Hansen, 1949), манометры сопротивления Ламберта и Вуда (Е. Lambert, E. H. Wood, 1947) и др. Они отличаются от оптических лишь тем, что перемещение в них чувствительного элемента (мембраны) преобразуется в электрические показатели. Применение электроники позволило получить миниатюрные конструкции манометрических преобразователей. Веттеррер (Wetterrer, 1943), Гауэр и Джайнепп (О. H. Gauer, Gienapp, 1950), А. Г. Семенов (1956) разработали вводимые в организм датчики диам. 2—3 мм.
Приборы для измерения В. д. состоят из двух основных составных частей: измерительной части (электроманометр) и калибровочно-проточной системы. Первая воспринимает, измеряет и преобразует сигнал для подачи на регистрирующий прибор. Вторая служит для заполнения всех содержащих жидкую среду коммуникаций физиологическим раствором, калибровки электроманометра, для создания постоянного тока жидкости в периоды между измерениями, функционируя при этом как инфузионная система.
Электроманометр состоит из трех последовательно соединенных звеньев: звена передачи давления — катетера (или иглы, соединенной с катетером), измерителя давления и функционального преобразователя.
Измеритель давления преобразует сигнал, имеющий физ. форму давления, в электрическую, удобную для передачи на функциональный преобразователь или непосредственно на регистратор. Входным элементом измерителя является чувствительная мембрана, отвечающая деформацией на изменение давления.
Функциональный преобразователь вводится при необходимости качественного преобразования сигнала с целью придать ему новый информационный смысл, напр, для дифференцирования или интегрирования (определения среднего динамического давления), нахождения максимального или минимального значений. Регистратором обычно служит многоканальный электрокардиограф.
Библиография Волынский Ю. Д. Изменения внутрисердечной гемодинамики при заболеваниях сердца, Л., 1969; Зорин А. Б., Колесов Е. В. и Силин В. А. Инструментальные методы диагностики пороков сердца и сосудов, Л., 1972; M e ш а л к и н E. Н. Зондирование и контрастное исследование сердца и магистральных сосудов, М., 1954; Петросян Ю. С. Катетеризация сердца при ревматических пороках, М., 1969; Углов Ф. Г., Нек л асов Ю. Ф. и Герасин В. А. Катетеризация сердца и селективная ангиокардиография, Л., 1974, библиогр.; Уиггерс К. Д. Динамика кровообращения, пер. с англ., М., 1957; Cardiac mechanics, Physiological, clinical and mathematical considerations, ed. by S. Mirsky, a. o., N. Y., 1974; Zimmermann H. A. Intravascular catheterization, Springfield, 1966.
A. А. Абиндер, С. М. Каменкер; E. К. Лукьянов (техн.).

http://xn--90aw5c.xn--c1avg/index.php/%D0%92%D0%9D%D0%A3%D0%A2%D0%A0%D0%98%D0%A1%D0%95%D0%A0%D0%94%D0%95%D0%A7%D0%9D%D0%9E%D0%95_%D0%94%D0%90%D0%92%D0%9B%D0%95%D0%9D%D0%98%D0%95

Цикл работы сердца. Давление в полостях сердца

В различные фазы сердечной деятельности
Сокращение камер сердца называется систолой, расслабление — диастолой. В норме частота сердечных сокращений 60-80 в минуту. Цикл работы сердца начинается с систолы предсердий. Однако в физиологии сердца и клинике для его описания используется классическая схема Уиггерса. Она делит цикл сердечной деятельности на периоды и фазы. Общая продолжительность цикла, при частоте 75 ударов в мин., составляет 0,8 сек. Длительность систолы желудочков равна 0,33 сек. Она включает 2 периода: период напряжения, продолжительностью 0,08 сек. и период изгнания — 0,25 сек. Период напряжения делится на две фазы: фазу асинхронного сокращения, длительностью 0,05 сек и фазу изометрического сокращения 0,03 сек. В фазе асинхронного сокращения происходит неодновременное т.е. асинхронное сокращение волокон миокарда межжелудочковой перегородки. Затем сокращение синхронизируется и охватывает весь миокард. Давление в желудочках нарастает и атриовентрикулярные клапаны закрываются. Однако его величина недостаточна для открывания полулунных клапанов. Начинается фаза изометрического сокращения. Т.е. во время нее мышечные волокна не укорачиваются, но сила их сокращений и давление в полостях желудочков нарастает. Когда оно достигает 120-130 мм.рт.ст. в левом и 25-30 мм.рт.ст. в правом, открываются полулунные клапаны — аортальный и пульмональный. Начинается период изгнания. Он длится 0,25 сек. и включает фазу быстрого и медленного изгнания. Фаза быстрого изгнания продолжается 0,12 сек., медленного — 0,13 сек. Во время фазы быстрого изгнания давление в желудочках значительно выше, чем в соответствующих сосудах, поэтому кровь из них выходит быстро. Но так как давление в сосудах нарастает, выход крови замедляется. После того, как кровь из желудочков изгоняется, начинается диастола желудочков. Ее продолжительность 0,47 сек. Она включает протодиастолический период, период изометрического расслабления, период наполнения и пресистолический период. Длительность протодиастолического периода 0,04 сек. Во время него начинается расслабление миокарда желудочков. Давление в них становится ниже, чем в аорте и легочной артерии, поэтому полулунные клапаны закрываются. После этого начинается период изометрического расслабления. Его продолжительность 0,08 сек. В этот период все клапаны закрыты и расслабление происходит без изменения длины волокон миокарда. Давление в желудочках продолжает снижаться. Когда оно уменьшается до 0, т.е. становится ниже, чем в предсердиях, открываются атриовентрикулярные клапаны. Начинается период наполнения, длительностью 0,25 сек. Он включает фазу быстрого наполнения, продолжительность которой 0,08 сек., и фазу медленного наполнения — 0,17 сек. После того, как желудочки пассивно заполнились кровью, начинается пресистолический период, во время которого происходит систола предсердий. Его длительность 0,1 сек. В этот период в желудочки закачивается дополнительное количество крови. Давление в предсердиях, в период их систолы, составляет в левом 8-15 мм. рт.ст., а правом 3-8 мм.рт.ст.
Отрезок времени от начала протодиастолического периода и до пресистолического, т.е. систолы предсердий, называется общей паузой. Ее продолжительность 0,4 сек. В момент общей паузы полулунные клапаны закрыты, а атриовентрикулярные открываются. Первоначально предсердия, а затем желудочки заполняются кровью. Во время общей паузы происходит пополнение энергетических запасов кардиомиоцитов, выведение из них продуктов обмена, ионов кальция и натрия, насыщение кислородом. Чем короче общая пауза, тем хуже условия работы сердца. Давление в полостях сердца в эксперименте измеряется путем пунктирования, а клинике их катеттеризацией.
Физиологические свойства сердечной мышцы
Автоматия сердца
Сердечной мышце свойственны возбудимость, проводимость, сократимость и автоматия. Возбудимость это способность миокарда возбуждаться при действии раздражителя, проводимость — проводить возбуждение, сократимость — укорачиваться при возбуждении. Особое свойство — автоматия. Это способность сердца к самопроизвольным сокращениям. Еще Аристотель писал, что в природе сердца имеется способность биться с самого начала жизни и до ее конца, не останавливаясь. В прошлом веке существовало 3 основных теории автоматии сердца. Прохаска и Мюллер выдвинули нейрогенную теория, считая причиной его ритмических сокращений нервные импульсы. Гаскелл и Энгельман предложили миогенную теорию, согласно которой импульсы возбуждения возникают в самой сердечной мышце. Существовала теория гормона сердца, который вырабатывается в нем и инициирует его сокращения. Автоматию сердца можно наблюдать на изолированном сердце по Штраубу (рис.). В 1902 году, применив такую методику Томский профессор А.А.Кулябко впервые оживил человеческое сердце.
В конце 19 века в различных участках миокарда предсердий и желудочков были обнаружены скопления, своеобразных по строению, мышечных клеток, которые назвали атипическими. Эти клетки больше в диаметре, чем сократительные, в них меньше сократительных элементов и больше гранул гликогена. В последние годы установлено, что скопления образованы Р-клетками (клетками Пуркинье) или пейсмекерными (ритмоводящими). Кроме того, в них имеются также переходные клетки. Они занимают промежуточное положение между сократительными и пейсмекерными кардиомиоцитами и служат для передачи возбуждения. Такие 2 типа клеток образуют проводящую систему сердца. В ней выделяют следующие узлы и пути:
1. Синоатриальный узел (Кейс-Флека). Он расположен в устье полых вен, т.е. венозных синусах.
2. Межузловые и межпредсердные проводящие пути Бахмана, Венкенбаха и Торелла. Проходят по миокарду предсердий и межпредсердной перегородке.
3. Атриовентрикулярный узел (Ашофф-Тавара). Находится в нижней части межпредсердной перегородки под эндокардом правого предсердия.
4. Атриовентрикулярный пучок или пучок Гиса. Идет от атриовентрикулярного узла по верхней части межжелудочковой перегородке. Затем делится на две ножки — правую и левую. Они образуют ветви в миокарде желудочков.
5. Волокна Пуркинье. Это концевые разветвления ветвей ножек пучка Гиса. Образуют контакты с клетками сократительного миокарда желудочков (рис).
Синоатриальный узел образован преимущественно Р-клетками. Остальные отделы проводящей системы переходными кардиомиоцитами. Однако небольшое количество клеток-пейсмекеров имеется и в них, а также сократительном миокарде предсердий и желудочков. Сократительные кардиомиоциты соединены с волокнами Пуркинье, а также между собой нексусами, т.е. межклеточными контактами с низким электрическим сопротивлением. Благодаря этому и примерно одинаковой возбудимости кардиомиоцитов, миокард является функциональным синцитием. Т.е. сердечная мышца реагирует на раздражение как единое целое.
Роль различных отделов проводящей системы в автоматии сердца впервые была установлена Станниусом и Гаскеллом. Станниус накладывал лигатуры (т.е. делал перевязки) на различные участки сердца. Первая лигатура накладывается между венозным синусом, где расположен синоатриальный узел, и правым предсердием. После этого синус продолжает сокращаться в обычном ритме, т.е. с частотой 60-80 сокращений в минуту, а предсердия и желудочки останавливаются. Вторая лигатура накладывается на границе предсердий и желудочков. Это вызывает возникновение сокращений желудочков с частотой примерно в 2 раза меньшей, чем частота автоматии синусного узла, т.е. 30-40 в минуту. Желудочки начинают сокращаться из-за механического раздражения клеток атриовентрикулярного узла. Третья лигатура накладывается на середину желудочков. После этого их верхняя часть сокращается в атриовентрикулярном ритме, а нижняя с частотой в 4 раза меньше синусного ритма, т.е. 15-20 в минуту. Гаскелл вызывал местное охлаждение узлов проводящей системы и установил, что ведущим водителем ритма сердца является синоатриальный. На основании опытов Станниуса и Гаскелла был сформулирован принцип убывающего градиента автоматии. Он гласит, что чем дальше центр автоматии сердца расположен от его венозного конца и ближе к артериальному, тем меньше его способность к автоматии. В нормальных условиях синоатриальный узел подавляет автоматию нижележащих, т.к. частота его спонтанной активности выше. Поэтому синоатриальный узел называют центром автоматии I-го порядка, атриовентрикулярный II-го, а пучок Гиса и волокна Пуркинье III-го.
Нормальная последовательность сокращений отделов сердца обусловлена особенностями проведения возбуждения по его проводящей системе. Возбуждение начинается в ведущем водителе ритма — синоатриальном узле. От него, по межпредсердным ветвям пучка Бахмана, возбуждение со скоростью 0,9-1,0 м/сек распространяется по миокарду предсердий. Начинается их систола. Одновременно от синусного узла возбуждение по межузловым путям Венкенбаха и Торелла достигает атриовентрикулярного узла. В нем скорость проведения резко снижается до 0,02-0,05 м/сек. Возникает атриовентрикулярная задержка. Т.е. проведение импульсов к желудочкам задерживается на 0,02-0,04 сек. Благодаря этой задержке, кровь во время систолы предсердий поступает в еще на начавшие сокращаться желудочки. От атриовентрикулярного узла по пучку Гиса, его ножкам и их ветвям возбуждение идет со скоростью 2-4 м/сек. Благодаря такой высокой скорости оно одновременно охватывает межжелудочковую перегородку и миокард обоих желудочков. Скорость проведения возбуждения по миокарду желудочков 0,8-0,9 м/сек.

http://lektsii.org/6-56112.html

Давление в полостях сердца

Так как движение крови в полостях сердца, как и во всей кровеносной системе, обусловлено разностью давлений по всему пути движения крови, то необходимо рассмотреть, как меняется давление в предсердиях и желудочках при систоле и диастоле.
Впервые измерения давления в полостях сердца, а также в аорте и легочной артерии в экспериментах на крупных животных (лошадях и собаках) были проведены в 1861 г. Шово и Мареем. Для этой цели они вводили через вскрытую на шее яремную вену тонкую металлическую трубку — зонд, проталкивая ее до полой вены, а затем до правого предсердия, правого желудочка или легочной артерии. Зонд соединяли с прибором для регистрации давления. Если было необходимо определять колебания давления в левой половине сердца, то зонд вводили в левый желудочек, через левую сонную артерию и дугу аорты.

В последние годы измерения внутрисердечпого давления производят и у человека при некоторых заболеваниях сердца, когда эти измерения необходимы для диагностики, т. е. выяснения характера заболевания сердца. Для этой цели в центральный конец вскрытой плечевой вены вводят тонкий эластичный полый зонд — катетер и проталкивают его по направлению к полой вене и далее до правого предсердия, желудочка или легочной артерии (рис. 24). В аорту или левый желудочек зонд вводят через плечевую артерию. Измерение давления в полостях сердца и крупных сосудах производят также путем их пункции, т. е. прокалывают грудную клетку и вводят полую иглу в одно из предсердий или в один из желудочков, в аорту или в легочную артерию. Введенный в полость сердца или в крупный сосуд заполненный противосвертывающим раствором зогд (или иглу) соединяют с чувствительным и безынерционным электрическим манометром и регистрируют таким путем колебания давления.
Рис. 24. Путь по которому проходит катетер из локтевой вены в правое сердце и легочную артерию (А), и рентгенограмма грудной клетки человека с введенным в легочную артерию катетером (Б) (по Е. Н. Мешалкину)
Колебания давления в предсердиях относительно невелики. На высоте, систолы предсердий давление в них равно 5-8 мм рт. ст. Во время диастолы предсердий давление в них падает до 0, затем, начиная с середины систолы желудочков, оно медленно нарастает вследствие наполнения полости предсердия кровью, притекающей из вен (рис. 25). Когда систола желудочков закапчивается и атриовентрикулярные клапаны открываются, давление в предсердиях вновь падает, потому что кровь из них свободно переходит в желудочки. За 0.1 секунды до начала систолы желудочков начинается систола предсердий, в результате которой происходит некоторое добавочное исполнение желудочков кровью. Это добавочное наполнение не имеет, однако, важного значения, так как большая часть наполняющей желудочек крови уже поступила в него в первый период диастолы желудочков.
Уровень давления в предсердиях во время их диастолы зависит от фазы дыхания. Во время вдоха давление в предсердиях в начале их диастолы становится отрицательным, т. е. ниже атмосферного. Причина этого понижения давления заключается в том, что на высоте вдоха отрицательное давление в грудной полости возрастает. Вследствие понижения давления в предсердиях на высоте вдоха увеличивается приток к ним крови из вен. Во время выдоха отрицательное давление в грудной полости уменьшается и давление в предсердиях в начале их диастолы становится близким к 0.

Систола желудочков начинается после окончания систолы предсердий. Волна сокращения, постепенно распространяясь по миокарду, не сразу охватывает всю массу мускулатуры желудочков; часть мышечных волокон сокращается, вследствие чего другая их часть, еще не сократившаяся, не изменяется. Поэтому форма желудочков изменяется, однако давление не меняется. Этот период систолы желудочков, когда происходит распространение волны возбуждения и сокращения по миокарду, называют фазой асинхронного сокращения, или периодом изменения формы желудочков. Он продолжается 0,05 секунды. После того как все мышечные волокна желудочков охвачены сокращением, давление крови в полости желудочков начинает увеличиваться, что вызывает закрытие атриовентрикулярных клапанов.
Полулунные клапаны в это время также закрыты, потому что давление в желудочках пока еще ниже, чем в аорте и легочной артерии. Поэтому в течение короткого отрезка времени — 0,03 секунды — мускулатура желудочков напрягается, но их объем меняется (так как кровь в желудочках, подобно всякой жидкости, практически несжимаема) до тех пор, пока давление в желудочке не превысит давления в аорте и легочной артерии и пока под влиянием напора крови не откроются полулунные клапаны. Период сокращения при закрытых клапанах называют фазой изометрического сокращения (изометрическим называют такое сокращение мышцы, при котором мышечные волокна развивают напряжение, но не укорачиваются). Фазы асинхронного и изометрического сокращений вместе называют периодом напряжения желудочков (2 и 3 на рис. 25).
Рис. 25. Схематизированные кривые изменения давлении в правых (А) и левых (Б) отделах сердца, тонов сердца (В), объема желудочков (Г) и электрокардиограмма (Д).

Когда в результате изометрического сокращения давление в желудочках становится выше, чем давление в аорте и легочпой артерии, клапаны аорты и легочной артерии открываются, наступает фаза изгнания крови из желудочков и кровь поступает из желудочков в аорту и легочную артерию (4 на рис.25).
У человека изгнание крови, иначе говоря, систолический выброс в аорту, т. е. в большой круг кровообращения, начинается, когда давление в левом желудочке достигает 65-75 мм рт. ст., а изгнание крови в легочную артерию, т. е. в малый круг кровообращения, начинается, когда давление крови в правом желудочке достигает 5-12 мм рт. ст.
Рис. 26. Нормальные величины давления в правом предсердии, правом желудочке, легочной артерии, левом предсердии, левом желудочке, аорте (по Луизада и Лиу).
В первый момент фазы изгнания давление крови в желудочках нарастает так же круто, как и до открытия полулунных клапанов (фаза быстрого изгнания — 0,10-0,12 секунды). По мере того как количество крови в желудочках убывает и приток крови в аорту и легочную артерию становится меньше, чем отток от них, нарастание давления прекращается и давление к концу систолы начинает падать (фаза замедленного изгнания крови — 0,10-0,15 секунды).
Максимальный уровень давления на высоте систолы в нормальных физиологических условиях достигает в левом желудочке 115-125 мм рт. ст., а в правом желудочке 25-30 мм. Большая высота давления крови, создаваемого левым желудочком, чем правым, обусловлена большей мощностью его мускулатуры. Это связано с тем, что левому желудочку приходится преодолевать большее сопротивление току крови в сосудах большого круга кровообращения. Колебания давления в аорте и легочной артерии в период изгнания крови из желудочков следуют за изменениями давления в соответствующем желудочке: в аорте на высоте систолы давление равно 110-125 мм , а в легочной артерии — 25-30 мм (рис. 26).
Вслед за фазой изгнания наступает диастола желудочков. Они начинают расслабляться, поэтому давление в аорте становится выше, чем в желудочке, и полулунные клапаны захлопываются. Время от начала расслабления желудочков до закрытия полулунных клапанов названо протодиастолическим периодом, который длится 0,04 секунды (5 на рис. 25). Затем в течение некоторого времени (около 0,08 секунды) желудочки продолжают расслабляться при закрытых и атриовентрикулярных и полулунных клапанах, пока давление в желудочках не упадет ниже, чем в предсердиях, уже наполненных к этому времени кровью. Этот период систолы обозначают как фазу изометрического расслабления, или фазу спадения напряжения (6 на рис. 25). Ее длительность в среднем 0,08 секунды. Вслед за этим створчатые клапаны открываются, и кровь из предсердии начинает наполнить желудочки.
Поступление крови в желудочки идет вначале быстро, так как давление в них после их расслабления падает до 0 (фаза быстрого наполнения, длящаяся 0,08 секунды, — 7 на рис. 25). По мере наполнения желудочков давление в них немного увеличивается и наполнение замедляется (фаза замедленного наполнения, продолжающаяся 0,16 секунды, — 8 на рис. 25). В конце диастолы желудочков происходит систола предсердий длительностью 0,1 секунды (фаза наполнения желудочков, обусловленная систолой предсердий, или пресистола, — 1 на рис. 25).
Во время диастолы желудочков давление крови в аорте и легочной артерии постепенно снижается по мере оттока из них крови и к концу диастолы оно равно в аорте 65-75 мм, а в легочной артерии — 5— 10 мм рт. ст. Так как это конечно-диастолическое давление выше давления в желудочках, то полулунные клапаны остаются закрытыми до тех пор, пока давление в желудочках при их сокращении не превысит уровень давления в крупных артериальных стволах.
Последовательность отдельных фаз цикла деятельности желудочков может быть представлена следующим образом:

Приведенные показатели продолжительности систолы и диастолы и их фаз представляют собой средние данные, наблюдаемые при частоте сердечных сокращений 75 в минуту. При более частом или более медленном ритме работы сердца длительность фаз изменяется. При учащении ритма значительно укорачивается диастола, главным образом за счет уменьшения длительности фазы медленного наполнения. Относительно меньше укорачивается систола за счет уменьшения времени медленного изгнания крови из желудочков. При замедлении работы сердца происходят противоположные изменения длительности фаз изгнания и наполнения желудочков.

http://www.amedgrup.ru/davlen.html

Нормальные величины давления в полостях сердца и легочной артерии, мм рт.ст.

Сердечный индекс[/i] — отношение показателей CB и площади поверхности тела. Его определяют путем деления показателя CB на величину поверхности тела:
СИ [л/(мин-м 2 )] = СВ/площадь поверхности тела, м 2 .
Ударный объем[/i] количество крови, выбрасываемое сердцем за одну систолу.
Работа левого желудочка[/i] механическая работа, выполняемая сердцем в 1 мин.
Давление заклинивания легочной артерии,[/i] или давление заклинивания легочных капилляров, — давление в дистальной ветви легочной артерии при раздутом баллончике катетера Свана—Ганца.
Центральное венозное давление[/i] — давление в устье полой вены или в правом предсердии.
Общее периферическое сопротивление сосудов[/i] характеризует общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови: ОПСС [дин-с/(см 5 -м 2 )] = = [(САД — ЦВД)/СИ]-80. С помощью коэффициента 80 показатели давления и объема переводят в дин-с/см 5 . Фактически эта величина является индексом ОПСС.
Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол большого круга кровообращения. ОПСС — важный регулятор градиента давления между артериальной и венозной системой. Возрастание этого показателя приводит к подъему среднего АД, а снижение его — к уменьшению САД. Этот важный регуляторный механизм может быть нарушен как в сторону преобладания вазоконстрикции, так и в сторону преимущественной вазодилатации. Увеличение ОПСС происходит всегда при снижении ОЦК, острой крово- и плазмопотере, травматическом шоке, повышении уровня катехоламинов в крови. Эта физиологическая реакция может сопровождаться выраженной централизацией кровообращения, вплоть до полного прекращения кровотока в коже, мышцах, ренальной и чревной областях. При длительной вазоконстрикции создаются условия для анаэробного обмена в ишемизиро-ванных тканях. При значительном увеличении ОПСС возрастает постнагрузка, что создает неблагоприятные условия для работы сердца. При повышении ОПСС в 3 раза по сравнению с нормальным MOC может уменьшиться наполовину при тех же значениях давления в правом предсердии.
Многие состояния (анафилактический шок, сепсис, цирроз печени) приводят к снижению ОПСС, что сопровождается прогрессирующим падением АД. Изменение тонуса артериальных сосудов в различных отделах системного кровотока может быть различным: в одних областях возможна выраженная вазоконстрикция, в других — вазодилатация. Тем не менее, ОПСС имеет большое значение для дифференциальной диагностики вида гемодинамических нарушений.
Сопротивление легочных сосудов[/i] характеризует сопротивление сосудов малого круга кровообращения.
Основная функция системы кровообращения — доставка необходимого количества кислорода и питательных веществ в ткани. Кровь переносит энергетические вещества, витамины, ионы, гормоны и биологически активные вещества от места их образования к различным органам и тканям.
Баланс жидкости в организме, поддержание постоянной температуры тела, освобождение клеток от шлаков и доставка их к органам экскреции осуществляются благодаря постоянной циркуляции крови по сосудам.
Каждый сердечный цикл длится 0,8 с. Систола желудочков происходит в течение 0,3 с, диастола — в течение 0,5 с. Регуляция сердечного ритма в здоровом сердце осуществляется в синусовом узле, который расположен у места впадения полых вен в правое предсердие. Импульс возбуждения распространяется по предсердиям, затем к атриовентрикулярному (предсердно-желудочковому) узлу, спускается по правой и левой ветвям пучка Гиса и волокнам Пуркинье, находящимся на эндокардиальной поверхности обоих желудочков.
Присасывающая сила сердца.Во время систолы желудочков атриовентрикулярная перегородка смещается по направлению к желудочкам, и, следовательно, объем предсердий увеличивается. Образующееся в предсердиях разрежение способствует присасыванию крови из центральных вен в сердце. При расслаблении желудочков напряжение их стенки обеспечивает всасывание крови из предсердий в желудочки.
Дыхательные экскурсии относятся к экстракардиальным факторам регуляции MOC. Во время вдоха внутриплевральное давление становится отрицательным, что передается на предсердия и полые вены, и приток крови по этим венам в правое предсердие возрастает. При выдохе давление в брюшной полости
повышается, вследствие чего кровь как бы выдавливается из брюшных вен в грудные.
Отрицательное давление в плевральной полости обусловливает увеличение постнагрузки, а положительное (во время ИВЛ) оказывает противоположное действие. Этим можно объяснить снижение систолического АД во время фазы вдоха.
Венозный возврат.[/i] Сердце обычно рассматривается как насос, повышающий АД и создающий направленный поток крови (сердце является «двигателем циркуляции»). Однако его можно представить и как насос, постоянно понижающий давление в правом предсердии и таким образом способствующий венозному возврату. Фактически CB является результатом взаимодействия сердца и периферических сосудов. Снижение CB можно объяснить ухудшением насосной функции сердца или развитием циркуляторных нарушений. Периферическая циркуляция играет очень большую роль в поддержании наполнения сердца и, следовательно, обеспечивает адекватный CB. Если рассматривать системный кровоток, то объем крови за единицу времени, выбрасываемый сердцем (CB), должен равняться объему крови, который возвращается к сердцу, т.е. венозному возврату. В связи с тем, что CB всегда соответствует венозному возврату, любой фактор, уменьшающий венозный возврат, соответственно снижает CB. Для выявления первичной причины снижения CB следует оценить величину давления в правом предсердии. Повышение давления свидетельствует о миокардиальной недостаточности, а снижение — об изменении тонуса периферических сосудов. В последнем случае предпочтение следует отдавать инфузионной терапии. Венозный возврат имеет точную величину потока и не является простым эквивалентом преднагрузки; он непосредственно определяется уровнем давления в правом предсердии, волемическим статусом, системным венозным тонусом [Белучиф С. и др., 1997].
Преднагрузка.[/i] Применительно к миокарду преднагрузка определяется как сила, растягивающая сердечную мышцу перед ее сокращением. В соответствии с законом Франка— Старлинга сила сердечного сокращения зависит от длины мышечных волокон в конце диастолы. При повышении давления наполнения увеличивается объем выброса, что является важным механизмом адаптации в ответ на изменения венозного возврата. Для интактного желудочка преднагрузкой, по сути, становится конечный диастолический объем, который определяется растяжимостью стенок и давлением в полости желудочка — трансмуралъным давлением. Последнее представляет собой разницу между внутриполостным и юкстакардиальным (внекардиаль-ным) давлением. Поскольку КДО трудно определить у постели больного, обычно пользуются такими показателями, как конечное диастолическое давление левого или правого желудочка (КДДЛЖ, КДДПЖ). Если растяжимость левого желудочка нормальная, то ДЗЛА будет равно КДДЛЖ. У больных, находящихся в отделениях интенсивной терапии, растяжимость левого желудочка, как правило, снижена. Это особенно характерно для ИБС, действия блокаторов кальциевых каналов, влияния положительного давления во время ИВЛ. Таким образом, ДЗЛА определяет давление в левом предсердии, но не всегда является показателем преднагрузки на левый желудочек [Марино П., 1998].
По сравнению с левым в правом желудочке в норме связь между трансмуральным давлением и внутрижелудочковым объемом крови относительно более выражена. При малой растяжимости желудочка, как и при повышении внутригрудного давления, требуется большее давление внутри камеры сердца для достижения определенного конечно-диастолического объема и степени растяжения мышечных волокон, предшествующих сокращению. Снижение эластичности стенок желудочка может быть следствием поражения миокарда, ограничения со стороны перикарда или сдавления сердца извне. В условиях сердечной недостаточности для достижения средних значений CB требуется большее давление наполнения. В положении больного лежа на спине резерв преднагрузки снижается. В этом случае дальнейшее увеличение CB в основном достигается за счет увеличения ЧСС и/или фракции У О. Наибольшее значение механизм Франка—Старлинга приобретает при гиповолемии и в вертикальном положении больного [Marini J.J., Wheeler A.Р., 1997].
Постнагрузка.[/i] Постнагрузку определяют как силу, препятствующую или оказывающую сопротивление сокращению желудочков. Она эквивалентна напряжению, возникающему в стенке желудочка во время систолы. Это трансмуральное напряжение стенки желудочка зависит от систолического АД, радиуса камеры (желудочка), импеданса аорты и его составляющих, растяжимости и сопротивления артерий. Постнагрузка включает преднагрузку и давление в плевральной полости (щели). Нагрузочные характеристики применительно к сердцу описывают в единицах давления и объема крови [Марино П., 1998].
Умеренное увеличение постнагрузки сопровождается повышением сократительной способности миокарда, преднагрузки или ЧСС. У здорового человека при этом CB обычно изменяется мало, однако при истощении резервов преднагрузки, увеличении постнагрузки он может значительно уменьшиться. Правый желудочек по сравнению с левым в норме оказывается более чувствительным к изменению пост-
нагрузки. Дилатированные камеры сердца, как правых, так и левых отделов при декомпенсации чрезвычайно чувствительны к изменению постнагрузки. Кардиомегалия, отек легких и митральная регургитация — клинические симптомы, указывающие на необходимость медикаментозного снижения постнагрузки. В такой ситуации большое значение имеет динамическое определение ОПСС и СЛС. ОПСС помогает поддерживать АД на должном уровне, а увеличение СЛС может способствовать прогрессированию сердечной недостаточности. Возросшее сосудистое сопротивление в этом случае само по себе оказывает отрицательное воздействие на CB. Размер камер сердца также влияет на постнагрузку. В дилатированном сердце для создания необходимого внутриполостного давления требуется большее растяжение волокон во время систолы. Это особенно касается периферических волокон. Диуретики или селективные венодилататоры (нитроглицерин) способны снизить как пост -, так и преднагрузку.
Помимо влияния сосудистой сети, важным показателем реологии, оказывающим влияние на постнагрузку, является вязкость крови. Вязкость крови возрастает при увеличении гематокрита. Эта зависимость имеет нелинейный характер. При увеличении гематокрита эритроциты медленнее продвигаются по капиллярам, и эффективный транспорт кислорода, значение которого зависит от ОЦК и сосудистой емкости, может достигать максимальных значений. Однако при возрастании постнагрузки CB может снизиться, в результате чего уменьшится и транспорт кислорода.
Ткани обладают различной толерантностью к изменениям гематокрита и поступления кислорода [Marini J.J., Wheeler A.P., 1997].
Объем циркулирующей крови.[/i] Показатель ОЦК является динамичес-
кой величиной и постоянно меняется в широких пределах. В состоянии покоя не вся кровь участвует в циркуляции, и лишь некоторый ее объем, совершающий полный кругооборот за относительно короткий промежуток времени, необходим для поддержания кровообращения.
В практике интенсивной терапии ОЦК — важнейший критерий состояния кровообращения.
При дефиците ОЦК лечение начинают с немедленного восполнения сосудистого объема, а не с медикаментозной терапии возникающей при этом недостаточности кровообращения. От плазматического объема и объема крови зависит венозный приток к сердцу, снижение которого сопровождается уменьшением наполнения сердечных камер и, следовательно, У О. В табл. 2.2 приведены средние физиологические нормы ОЦК в зависимости от пола, возраста и конституции [Тар-роуА.Б., Эриксон Дж.К., 1977].
Таблица 2.2. Средние значения ОЦК в норме

http://pdnr.ru/d149488.html

Давление в полостях сердца в различные фазы сердечного цикла (мм рт. Ст.).

Систола желудочков (0,35 сек).
Период напряжения (0,1 сек).
Состоит из двух фаз: фазы асинхронного сокращения и фазы изометрического сокращения.
Фаза асинхронного сокращения0,05 сек.
Отсутствие слитного сокращения кардиомио-цитов желудочков, разрозненное изменение напря­жения отдельных мышечных волокон, давление в полостях желудочков в эту фазу практически не из­меняется.
2. Фаза изометрического сокращения0,05 сек. Эта фаза начинается с момента охвата возбуждением желудочков. При этом атриовентрикулярные клапаны завер­шили процесс закрытия, аортальные клапаны еще не откры­вались.
Вследствие слитного сокращения мускулатуры желу­дочков:
• существенно повышается давление в их полостях (до величин в отводящих сосудах: 15-20 мм рт.ст. в пра­вом желудочке и 80 мм рт.ст. — в левом желудочке);
• значительно повышается тонус мышечных волокон при постоянной их длине, так как кровь, заполняющая желудочки, как и любая жидкость, несжимаема.
Период изгнания (0,25 сек):
Состоит из двух фаз: фазы быстрого изгнания и фазы медленного изгнания. Формирует ударный (систолический)
Понятие об ударном (систолическом) объеме крови —
количество крови, которое нагнетается каждым желудочком
в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца.
1. Фаза быстрого изгнания0Д2 сек.
Вследствие большого перепада давления между полостями желудочков и отводящими сосудами в эту фазу изгоняется до 70% от ударного (систолическо­го) объема.
2. Фаза медленного изгнания0,13 сек.
Изгоняются 30% У О. Формируется конечноси-столический объем.
Понятие о конечносистолическом объеме желудоч­ков (резервный объем) (КСО) — объем желудочка при за­вершении систолы.
Протодиастолический период0,05 сек.
Предшествует диастоле (в этот момент на ЭКГ регист­рируется зубец Т, характеризующий восстановление поляр­ности кардиомиоцитов, характерной для ПП).
Диастола желудочков (0,60 сек).
Состоит из фазы изометрического наполнения и перио­да изгнания.
Фаза изометрического расслабления — 0,10 сек.
Длится до того момента, когда давление в полостях же­лудочков упадет ниже давления крови в предсердиях.
Период наполнения — 0,5 сек.
Состоит из фазы быстрого наполнения, фазы медленно­го наполнения и фазы дополнительного наполнения.
1. Фаза быстрого наполнения0,2 сек.
Вследствие того, что во время систолы желу­дочков в предсердиях давление крови последова­тельно возрастало вследствие постоянного венозного притока, сразу после открытия атриовентрикулярных клапанов кровь под давлением устремляется в желу­дочки.
2. Фаза медленного наполнения0,2 сек.
Из-за постепенного выравнивания давления процесс пассивного наполнения замедляется.
3. Фаза дополнительного наполнения желудочковО, 1 сек.
Обеспечивается систолой предсердий. При этом активно нагнетается последняя порция крови (5-10 % от УО), формируется конечнодиастоличе-ский объем (КДО)- объем желудочка в конце диа­столы отражает наполнение сердца кровью.

http://studfiles.net/preview/5807584/page:43/

Артериальное давление

  • Физиология
  • История физиологии
  • Методы физиологии

Давление крови в полостях сердца и сосудах

Артериальное давление — один из ведущих параметров гемодинамики, характеризующий силу, которую оказывает кровяной поток на стенки сосудов.
Давление крови зависит от количества крови, выбрасываемой сердцем в артерии, и от общего периферического сопротивления, которое встречает кровь, протекая по артериям, артериолам и капиллярам.
Для определения величины артериального давления у человека пользуются методом, предложенным Н.С. Коротковым. С этой целью используют сфигмоманометр Рива-Роччи. У человека обычно определяют величину артериального давления в плечевой артерии. Для этого на плечо накладывают манжету и нагнетают в нее воздух до полного сдавливания артерий, показателем чего может быть прекращение пульса.
Если поднять давление в манжете выше уровня систолического артериального давления, то манжета полностью перекрывает просвет артерии и кровоток в ней прекращается. Звуки при этом отсутствуют. Если теперь постепенно выпускать воздух из манжеты, то в момент, когда давление в ней станет чуть ниже уровня систолического артериального, кровь при систоле преодолевает сдавленный участок. Удар о стенку артерии порции крови, движущейся с большой скоростью и кинетической энергией через сдавленный участок, порождает звук, слышимый ниже манжеты. То давление в манжете, при котором появляются первые звуки в артерии, соответствует максимальному, или систолическому, давлению. При дальнейшем снижении давления в манжете наступает момент, когда оно становится ниже диастолического, кровь начинает проходить по артерии как во время систолы, так и во время диастолы. В этот момент звук в артерии ниже манжеты исчезает. По величине давления в манжете в момент исчезновения звуков в артерии судят о величине минимального, или диастолического, давления.
Максимальное давление в плечевой артерии у взрослого здорового человека в среднем равно 105-120 мм рт. ст., а минимальное — 60-80 мм рт. ст. Повышение артериального давления приводит к развитию гипертонии, понижение — к гипотонии.
Нормальные значения артериального давления в зависимости от возраста

Разность между максимальным и минимальным давление называют пульсовым давлением.
Артериальное кровяное давление повышается под влиянием различных факторов: при выполнении физической работы, при различных эмоциональных состояниях (страх, гнев, испуг и др.); оно зависит также от возраста.

Рис. 1. Величина систолического и диастолического давления в зависимости от возраста

Давление крови в полостях сердца

Давление крови в полостях сердца зависит от ряда факторов. Среди них сила сокращения и степень расслабления миокарда, объем крови, заполняющей полости сердца, давление крови в сосудах, из которых притекает кровь во время диастолы и в которые кровь изгоняется во время систолы. Давление крови в левом предсердии колеблется от 4 мм рт. ст. в диастолу до 12 мм рт. ст. в систолу, а в правом — от 0 до 8 мм рт. ст. Давление крови в левом желудочке в конце диастолы составляет 4-12 мм рт. ст., а в конце систолы — 90-140 мм рт. ст. В правом желудочке оно составляет в конце диастолы 0-8 мм рт. ст., а в конце систолы — 15-28 мм рт. ст. Таким образом, размах колебаний давления крови в левом желудочке составляет 4-140 мм рт. ст., а в правом — 0-28 мм рт. ст. Давление крови в полостях сердца измеряется во время зондирования сердца с помощью датчиков давления. Его величины имеют важное значение для оценки состояния миокарда. В частности, скорость прироста давления крови во время систолы желудочков является одной из важнейших характеристик сократимости их миокарда.

Рис. 2. График изменения артериального давления в различных отделах сердечнососудистой системы

Давление крови в артериальных сосудах

Давление крови в артериальных сосудах, или артериальное давление, является одним из важнейших показателей гемодинамики. Оно возникает в результате воздействия на кровь двух противоположно направленных сил. Одна из них — сила сокращающегося миокарда, действие которой направлено на продвижение крови в сосудах, а вторая — сила сопротивления току крови, обусловленная свойствами сосудов, массой и свойствами крови в сосудистом русле. Давление крови в артериальных сосудах зависит от трех основных составляющих сердечно-сосудистой системы: работы сердца, состояния сосудов, объема и свойств циркулирующей в них крови.
Факторы, определяющие артериальное давление:

  • артериальное давление расчитывается по формуле:
    АД = МОК • ОПСС, где АД — артериальное давление; МОК — минутный объем крови; ОПСС — общее периферическое сосудистое сопротивление;
  • сила сокращений сердца (МОК);
  • тонус сосудов, особенно, артериол (ОПСС);
  • аортальная компрессионная камера;
  • вязкость крови;
  • объем циркулирующей крови;
  • интенсивность оттока крови через прекапиллярное русло;
  • наличие сосудосуживающих или сосудорасширяющих регуляторных влияний

Факторы, определяющие венозное давление:

  • остаточная движущая сила сердечных сокращений;
  • тонус вен и их общее сопротивление;
  • объем циркулирующей крови;
  • сокращение скелетных мышц;
  • дыхательные движения грудной клетки;
  • присасывающее действие сердца;
  • изменение гидростатического давления при различных положениях тела;
  • наличие регуляторных факторов, уменьшающих или увеличивающих просвет вен

Величина давления крови в аорте и крупных артериях предопределяет градиент давления крови в сосудах всего большого круга кровообращения и величины объемной и линейной скоростей кровотока. Давление крови в легочной артерии обусловливает характер кровотока в сосудах малого круга кровообращения. Величина артериального давления крови является одной из жизненно важных констант организма, которая регулируется сложными, многоконтурными механизмами.

Методы определения артериального давления

Ввиду важности этого показателя для жизнедеятельности организма артериальное давление крови — один из наиболее часто оцениваемых показателей кровообращения. Это обусловлено также относительной доступностью и простотой методов определения артериального давления. Его измерение является обязательной врачебной процедурой при обследовании больных и здоровых людей. При выявлении существенных отклонений артериального давления от нормальных величин используются методы его коррекции, основанные на знании физиологических механизмов регуляции давления крови.
Методы измерения давления

  • Прямое инвазивное измерение давления
  • Неинвазивные методы:

    • метод Рива — Роччи;
    • аускультативный метод с регистрацией тонов Н.С. Короткова;
    • осциллография;
    • тахоосциллография;
    • ангиотензиотонография по Н.И. Аринчину;
    • электросфигмоманометрия;
    • суточное мониторирование артериального давления

Определяют артериальное кровяное давление двумя методами: прямым (кровавым) и косвенным.
При прямом методе измерения кровяного давления в артерию вводят полую иглу или стеклянную канюлю, соединенную с манометром трубкой с жесткими стенками. Прямой метод определения артериального давления наиболее точный, но он требует хирургического вмешательства и поэтому не используется в практике.
Позднее для определения систолического и диастолического давления Н.С. Коротковым был разработан аускультативный способ. Он предложил выслушивать сосудистые тоны (звуковые явления), возникающие в артерии ниже места наложения манжеты. Коротков показал, что в несдавленной артерии звуки при движении крови обычно отсутствуют. Если поднять давление в манжете выше систолического, то в пережатой плечевой артерии кровоток прекращается и звуки также отсутствуют. Если постепенно выпускать воздух из манжеты, то в момент, когда давление в ней станет несколько ниже систолического, кровь преодолевает сдавленный участок, ударяет о стенку артерии и этот звук улавливается при прослушивании ниже манжеты. Показание манометра при появлении первых звуков в артерии соответствует систолическому давлению. При дальнейшем снижении давления в манжете звуки сначала усиливаются, а затем исчезают. Таким образом, показания манометра в этот момент соответствует минимальному — диастолическому — давлению.
В качестве внешних показателей полезного результата тонической деятельности сосудов служат: артериальный пульс, венозное давление, венный пульс.
Артериальный пульс — ритмические колебания артериальной стенки, вызываемые систолическим повышением давления в артериях. Пульсовая волна возникает в аорте в момент изгнания крови из желудочка, когда давление в аорте резко повышается и ее стенка растя пишется. Волна повышенного давления и вызванное этим растяжением колебание сосудистой стенки распространяются с определенной скоростью от аорты до артериол и капилляров, где пульсовая волна гаснет. Зарегистрированная на бумажной ленте пульсовая кривая называется сфигмограммой.
На сфигмограммах аорты и крупных артерий различают две основные части: подъем кривой — анакрота и спад кривой — ката- крота. Анакрота обусловлена систолическим повышением давления и растяжением стенки артерий кровью, выброшенной из сердца в начале фазы изгнания. Катакрота возникает в конце систолы желудочка, когда давление в нем начинает падать и происходит спад пульсовой кривой. В тот момент, когда желудочек начинает расслабляться и давление в его полости становится ниже, чем в аорте, кровь, выброшенная в артериальную систему, устремляется назад к желудочку. В этот период в артериях давление резко падает и на пульсовой кривой появляется глубокая выемка — инцизура. Движение крови обратно к сердцу встречает препятствие, так как полулунные клапаны под влиянием обратного тока крови закрываются и препятствуют ее поступлению в левый желудочек. Волна крови отражается от клапанов и создает вторичную волну повышения давления, называемую дикротическим подъемом.
Рис. 3. Артериальная сфигмограмма
Пульс характеризуют частота, наполнение, амплитуда и ритм напряжения. Пульс хорошего качества — полный, быстрый, наполненный, ритмичный.
Венный пульс отмечают в крупных венах вблизи сердца. Он обусловлен затруднением притока крови из вен в сердце во время систолы предсердий и желудочков. Графическая запись венного пульса называется флебограммой.
Суточное мониторирование артериального давления — измерение артериального давления в течение 24 ч в автоматическом режиме с последующей расшифровкой записи. Параметры артериального давления варьируют на протяжении суток. У здорового человека артериальное давление начинает увеличиваться в 6.00, достигает максимальных значений к 14.00- 16.00, снижается после 21.00 и становится минимальным во время ночного сна.

Рис. 4. Суточные колебания артериального давления

Систолическое, диастолическое, пульсовое и среднее гемодинамическое давление

Давление, оказываемое на стенку артерии находящейся в ней кровью, называется артериальным давлением. Его величина обусловлена силой сердечных сокращений, притоком крови в артериальную систему, объемом сердечного выброса, эластичностью стенок сосудов, вязкостью крови и рядом других факторов. Различают систолическое и диастолическое артериальное давление.
Систолическое артериальное давление — максимальная величина давления, которое отмечается в момент сердечного сокращения.
Диастолическое давление — наименьшее давление в артериях при расслаблении сердца.
Разность между систолическим и диастолическим давлением называется пульсовым давлением.
Среднее динамическое давление представляет собой давление, при котором в отсутствие пульсовых колебаний наблюдается такой же гемодинамический эффект, как и при естественном колеблющемся давлении крови. Давление в артериях во время диастолы желудочков не падает до нуля, оно поддерживается благодаря упругости артериальных стенок, растянутых во время систолы.

Рис. 5. Факторы, определяющее среднее артериальное давление

Систолическое и диастолическое давление

Систолическим (максимальным) артериальным давлением называют наибольшую величину давления, оказываемого кровью на стенку артерий во время систолы желудочков. Величина систолического артериального давления крови зависит преимущественно от работы сердца, но на его величину оказывают влияние объем и свойства циркулирующей крови, а также состояние тонуса сосудов.
Диастолическим (.минимальным) артериальным давлением называют его наименьший уровень, до которого снижается давление крови в крупных артериях во время диастолы желудочков. Величина диастолического артериального давления крови зависит преимущественно от состояния тонуса сосудов. Однако повышение АДдиаст может наблюдаться на фоне высоких значений МОК и ЧСС при нормальном или даже пониженном общем периферическом сопротивлении кровотоку.
Нормальный уровень систолического давления в плечевой артерии для взрослого человека обычно находится в пределах 110-139 мм рт. ст. Границы нормы для диастолического давления в плечевой артерии составляют 60-89 мм рт. ст.
Кардиологи выделяют понятие оптимальный уровень артериального давления крови, когда систолическое давление составляет несколько менее 120 мм рт. ст., и диастолическое менее 80 мм рт. ст.; нормальный — систолическое менее 130 мм рт. ст. и диастолическое менее 85 мм рт. ст.; высокий нормальный уровень при систолическом давлении 130- 139 мм рт. ст. и диастолическом 85-89 мм рт. ст. Несмотря на то что с возрастом, особенно у людей старше 50 лет, артериальное давление крови обычно постепенно повышается, в настоящее время не принято говорить о возрастной норме повышения давлен

1 звезда2 звезды3 звезды4 звезды5 звезд (Поки оцінок немає)
Загрузка...
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector