Гасящий конденсатор вместо гасящего резистора

Гасящий конденсатор вместо резистора

Иногда возникает задача понизить переменное напряжение сети 220 вольт до некоторого заданного значения, причем применение понижающего трансформатора (в таком случае) не всегда бывает целесообразным.
Скажем, низкочастотный понижающий трансформатор, выполненный традиционно на трансформаторном железе, способный преобразовать мощность 200 Ватт, весит больше килограмма, не говоря о высокой стоимости. Следовательно в некоторых случаях можно применить гасящий резистор, который ограничит ток, однако при этом на самом гасящем резисторе выделится мощность в виде тепла, а это не всегда является приемлемым.
Например, если нужно запитать 200 Ваттную лампу только на половину ее наминала, потребовалось бы рассеять мощность в 100 Ватт на гасящем резисторе, а это крайне сомнительное решение.
Весьма удобной альтернативой, для данного примера, может служить применение гасящего конденсатора, емкостью около14мкф, (такой можно собрать из трех металлопленочных типа К73-17 по 4,7мкф, рассчитанных на 250в, а лучше – на 400в) это позволит получить нужный ток без необходимости рассеивать значительную мощность в виде тепла.

Рассмотрим физическую сторону этого решения. Как известно, конденсатор, включенный в цепь переменного тока, является реактивным элементом, обладающим емкостным сопротивлением, связанным с частотой переменного тока в цепи, а также с собственной емкостью.
Чем больше емкость конденсатора и чем выше частота переменного напряжения в цепи, тем больший ток проходит через конденсатор, значит емкостное сопротивление конденсатора обратно пропорционально его емкости, а также частоте переменного тока, в цепи, куда он включен.
Это видно и из формулы для емкостного сопротивления конденсатора:

http://grimmi.ru/kondensator-vmesto-resistora.html

rcl-radio.ru

Сайт для радиолюбителей

Расчет емкости балластного конденсатора для бестрансформаторного блока питания

Бестрансформаторные источники питания с гасящим конденсатором удобны своей простотой, имеют малые габариты и массу, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В.
В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно соединенные конденсатор и нагрузка. Неполярный конденсатор, включенный в цепь переменного тока, ведет себя как сопротивление, но, в отличие от резистора, не рассеивает поглощаемую мощность в виде тепла.
Для расчета емкости гасящего конденсатора используется следующая формула:

С — емкость балластного конденсатора (Ф); Iэфф — эффективный ток нагрузки; f — частота входного напряжения Uc (Гц); Uс — входное напряжение (В); Uн — напряжение нагрузки (В).
Для удобства расчетов, можно воспользоваться онлайн калькулятором
Конструкция бестрансформаторных источников и устройств, питающихся от них, должна исключать возможность прикосновения к любым проводникам в процессе эксплуатации. Особое внимание нужно уделить изоляции органов управления.

http://rcl-radio.ru/?p=35584

Как рассчитать и подобрать гасящий конденсатор

В самом начале темы, относительно подбора гасящего конденсатора, рассмотрим цепь, состоящую из резистора и конденсатора, последовательно подключенных к сети. Полное сопротивление такой цепи будет равно:

Эффективная величина тока, соответственно, находится по закону Ома, напряжение сети делить на полное сопротивление цепи:
В результате для тока нагрузки и входного и выходного напряжений получим следующее соотношение:
А если напряжение на выходе достаточно мало, то мы имеем право считать эффективное значение тока приблизительно равным:
Однако давайте рассмотрим с практической точки зрения вопрос подбора гасящего конденсатора для включения в сеть переменного тока нагрузки, рассчитанной на напряжение меньшее стандартного сетевого.
Допустим, у нас есть лампа накаливания мощностью 100 Вт, рассчитанная на напряжение 36 вольт, и нам по какой-то невероятной причине необходимо запитать ее от бытовой сети 220 вольт. Лампе необходим эффективный ток, равный:
Тогда емкость необходимого гасящего конденсатора окажется равна:
Имея такой конденсатор, мы обретаем надежду получить нормальное свечение лампы, рассчитываем, что она по крайней мере не перегорит. Такой подход, когда мы исходим из эффективного значения тока, приемлем для активных нагрузок, таких как лампа или обогреватель.

Но что делать, если нагрузка нелинейна и включена через диодный мост? Допустим, необходимо зарядить свинцово-кислотный аккумулятор. Что тогда? Тогда зарядный ток окажется для батареи пульсирующим, и его значение будет меньше эффективного значения:
Иногда радиолюбителю может быть полезным источник питания, в котором гасящий конденсатор включен последовательно с диодным мостом, на выходе которого имеется в свою очередь конденсатор фильтра значительной емкости, к которому присоединена нагрузка постоянного тока. Получается своеобразный бестрансформаторный источник питания с конденсатором вместо понижающего трансформатора:

Здесь нагрузка в целом будет нелинейной, а ток станет уже далеко не синусоидальным, и вести расчеты необходимо будет несколько иначе. Дело в том, что сглаживающий конденсатор с диодным мостом и нагрузкой внешне проявят себя как симметричный стабилитрон, ведь пульсации при значительной емкости фильтра станут пренебрежимо малыми.
Когда напряжение на конденсаторе будет меньше какого-то значения — мост будет закрыт, а если выше — ток пойдет, но напряжение на выходе моста расти не будет. Рассмотрим процесс более подробно с графиками:

В момент времени t1 напряжение сети достигло амплитуды, конденсатор C1 также заряжен в этот момент до максимально возможного значения минус падение напряжения на мосте, которое будет равно приблизительно выходному напряжению. Ток через конденсатор C1 равен в этот момент нулю. Далее напряжение в сети стало уменьшаться, напряжение на мосте — тоже, а на конденсаторе C1 оно пока не изменяется, да и ток через конденсатор C1 пока что нулевой.
Далее напряжение на мосте меняет знак, стремясь уменьшиться до минус Uвх, и в тот момент через конденсатор C1 и через диодный мост устремляется ток. Далее напряжение на выходе моста не меняется, а ток в последовательной цепочке зависит от скорости изменения питающего напряжения, словно к сети подключен только конденсатор C1.
По достижении сетевой синусоидой противоположной амплитуды, ток через C1 опять становится равным нулю и процесс пойдет по кругу, повторяясь каждые пол периода. Очевидно, что ток течет через диодный мост только в промежутке между t2 и t3, и величину среднего тока можно вычислить, определив площадь закрашенной фигуры под синусоидой, которая будет равна:
Если выходное напряжение схемы достаточно мало, то данная формула приближается к полученной ранее. Если же выходной ток положить равным нулю, то получим:
То есть при обрыве нагрузки выходное напряжение станет равно амплитуде сетевого. Значит следует применять такие компоненты в схеме, чтобы каждый из них выдержал бы амплитуду напряжения питания.
Кстати, при снижении тока нагрузки на 10%, выражение в скобках уменьшится на 10%, то есть напряжение на выходе увеличится примерно на 30 вольт, если изначально имеем дело, скажем, с 220 вольтами на входе и с 10 вольтами на выходе. Таким образом, использование стабилитрона параллельно нагрузке строго обязательно.
А что если выпрямитель однополупериодный? Тогда ток необходимо рассчитывать по такой формуле:
При небольших значениях выходного напряжения ток нагрузки станет вдвое меньшим, чем при выпрямлении полным мостом. А напряжение на выходе без нагрузки окажется вдвое большим, так как здесь мы имеем дело с удвоителем напряжения.
Итак, источник питания с гасящим конденсатором рассчитывается в следующем порядке:
Первым делом выбирают, каким будет выходное напряжение.
Затем определяют максимальный и минимальный токи нагрузки.
Далее определяют максимум и минимум напряжения питания.
Если ток нагрузки предполагается непостоянный, стабилитрон параллельно нагрузке обязателен!
Наконец, вычисляют емкость гасящего конденсатора.
Для схемы с двухполупериодным выпрямлением, для сетевой частоты 50 Гц, емкость находится по следующей формуле:
Полученный по формуле результат округляют в сторону емкости большего номинала (желательно не более 10%).
Следующим шагом находят ток стабилизации стабилитрона для максимального напряжения питания и минимального тока потребления:
Для однополупериодной схемы выпрямления гасящий конденсатор и максимальный ток стабилитрона вычисляют по следующим формулам:

Выбирая гасящий конденсатор, лучше ориентироваться на пленочные и металлобумажные конденсаторы. Конденсаторы пленочные небольшой емкости — до 2,2 мкф на рабочее напряжение от 250 вольт хорошо работают в данных схемах при питании от сети 220 вольт. Если же вам нужна большая емкость (более 10 мкф) — лучше выбрать конденсатор на рабочее напряжение от 500 вольт.

http://electrik.info/main/master/1311-kak-rasschitat-i-podobrat-gasyaschiy-kondensator.html

Как понизить переменное напряжение конденсатором, как его рассчитать?

Один — сделать ёмкостной делитель. Он рассчитывается так же, как и резистивный делитель (с учётом того, что падение напряжения на конденсаторе ОБРАТНО пропорционально его ёмкости). Второй — поставить гасящий конденсатор последовательно с нагрузкой. Ёмкость рассчитывается исходя из закона Ома для цепи переменного тока.
Но это всё имеет смысл только при сравнительно небольших токах. Если вот такая лампочка, то ток потребления у неё почти 3 ампера (100/36). И чтоб на частоте 50 Гц погасить 175 вольт при ВОТ ТАКОМ токе, нужна довольно большая ёмкость — 50 мкФ (при использовании делителя ёмкости потребуются ещё большего номинала). Причём электролитический конденсатор тут использовать нельзя — ёмкость должна работать на переменном напряжении! Значит — бумажные. А это очень громоздко.
Так что \»идите как все, по камушкам\». Поставьте трансформатор.
Я обычно провожу приблизительный расчёт конденсатора, исходя из расчёта реактивного сопротивления переменному току Z=1/F*C, где F — частота переменного тока в цепи в Гц, а C — ёмкость конденсатора в Фарадах, Z — сопротивление в омах. А потом можно рассчитать падение напряжения на участке цепи по закону ома: U=I*Z, где U — напряжение в вольтах, I — ток в амперах в приборе питания. Теперь, если вычесть из общего (сетевого) напряжения питания U, то полученное приблизительное напряжение на участке цепи напряжение, которое будет на нагрузке или потребителе питания для которого эти расчёты делались. Поскольку мы пользуемся переменным током, то конденсаторы должны быть не полярными на рабочее напряжение близкое или больше расчётного U. Для цепей постоянного тока такой вариант понижения напряжения не годится, так как конденсатор работает только в цепях переменного или импульсного тока.

http://www.bolshoyvopros.ru/questions/471795-kak-ponizit-peremennoe-naprjazhenie-kondensatorom-kak-ego-rasschitat.html

Бестрансформаторное электропитание.Конденсатор вместо резистора

В данной статье поговорим про бестрансформаторное электропитание.
В радиолюбительской практике, да и в промышленной аппаратуре источником электрического тока обычно являются гальванические элементы, аккумуляторы, или промышленная сеть 220 вольт. Если радиоприбор переносной (мобильный), то использование батарей питания себя оправдывает такой необходимостью. Но если радиоприбор используется стационарно, имеет большой ток потребления, эксплуатируется в условиях наличия бытовой электрической сети, то питание его от батарей практически и экономически не выгодно. Для питания различных устройств низковольтным напряжением от бытовой сети 220 вольт существуют различные виды и типы преобразователей напряжения бытовой сети 220 вольт в пониженное. Как правило, это схемы трансформаторного преобразования.

Схемы трансформаторного питания строятся по двум вариантам

1. «Трансформатор – выпрямитель — стабилизатор» — классическая схема питания, обладающая простотой построения, но большими габаритными размерами;
2. «Выпрямитель — импульсный генератор – трансформатор – выпрямитель – стабилизатор» — схема импульсного источника питания, обладающая малыми габаритными размерами, но имеющая более сложную схему построения.
Самое главное достоинство указанных схем питания – наличие гальванической развязки первичной и вторичной цепи питания. Это снижает опасность поражения человека электрическим током, и предотвращает выход аппаратуры из строя по причине возможного замыкания токоведущих частей устройства на «ноль». Но иногда, возникает потребность в простой, малогабаритной схеме питания, в которой наличие гальванической развязки не важно. И тогда мы можем собрать простую конденсаторную схему питания. Принцип её работы заключается в «поглощении лишнего напряжения» на конденсаторе. Для того, чтобы разобраться в том, как это поглощение происходит, рассмотрим работу простейшего делителя напряжения на резисторах.
Делитель напряжения состоит из двух резисторов R1 и R2. Резистор R1 – ограничительный, или по другому называется добавочный. Резистор R2 – нагрузочный (), он же является внутренним сопротивлением нагрузки.
Предположим, что нам необходимо из напряжения 220 вольт получить напряжение 12 вольт. Указанные U2 = 12 вольт должны падать на сопротивлении нагрузки R2. Это означает, что остальное напряжение U1 = 220 – 12 = 208 вольт должно падать на сопротивлении R1.
Допустим, что в качестве сопротивления нагрузки мы используем обмотку электромагнитного реле, а активное сопротивление обмотки реле R2 = 80 Ом. Тогда по закону Ома, ток, протекающий через обмотку реле, будет равен: Iцепи = U2/R2 = 12/80 = 0,15 ампер. Указанный ток должен течь и через резистор R1. Зная, что на этом резисторе должно падать напряжение U1 = 208 вольт, по закону Ома определяем его сопротивление:
R1 = UR1 / Iцепи = 208/0,15 = 1 387 Ом.
Определим мощность резистора R1: Р = UR1 * Iцепи = 208 * 0,15 = 31,2 Вт.
Для того, чтобы этот резистор не грелся от рассеиваемой на нём мощности, реальное значение его мощности необходимо увеличить в раза два, это приблизительно составит 60 Вт. Размеры такого резистора довольно внушительны. И вот здесь нам пригодится конденсатор!
Мы знаем, что любой конденсатор в цепи переменного тока обладает таким параметром, как «реактивное сопротивление» — сопротивление радиоэлемента изменяющееся в зависимости от частоты переменного тока. Реактивное сопротивление конденсатора определяется по формуле:
где п – число ПИ = 3,14, f – частота (Гц), С – ёмкость конденсатора (фарад).
Заменив резистор R1 на бумажный конденсатор С, мы «забудем» что такое резистор внушительных размеров.
Реактивное сопротивление конденсатора С должно приблизительно равняться ранее рассчитанному значению R1 = Хс = 1 387 Ом.
Преобразовав формулу заменив местами величины С и Хс, мы определим значение ёмкости конденсатора:

С1 = 1 / (2*3,14*50*1387) = 2,3*10 -6 Ф = 2,3 мкФ
Это может быть несколько конденсаторов с требуемой общей ёмкостью, включенных параллельно, или последовательно.
Схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:
Но изображённая схема работать будет, но не так как мы планировали! Заменив массивный резистор R1 на один, или два малогабаритных конденсатора, мы выиграли в размерах, но не учли одно — конденсатор должен работать в цепи переменного тока, а обмотка реле – в цепи постоянного тока. На выходе нашего делителя переменное напряжение, и его необходимо преобразовать в постоянное. Это достигается вводом в схему диодного выпрямителя разделяющего входную и выходную цепь, а так же элементов сглаживающих пульсацию переменного напряжения в выходной цепи.
Окончательно, схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

Конденсатор С2 — сглаживающий пульсации. Для исключения опасности поражения электрическим током от накопленного напряжения в конденсаторе С1, в схему введен резистор R1, который шунтирует конденсатор своим сопротивлением. При работе схемы он своим большим сопротивлением не мешает, а после отключения схемы от сети, в течение времени, определяемого секундами, через резистор R1 происходит разряд конденсатора. Время разряда определяется обыкновенной формулой:
Для того, чтобы следующий раз не делать все вышеперечисленные расчёты, выведем окончательную формулу расчёта ёмкости конденсатора схемы бестрансформаторного (конденсаторного) питания. При известных значениях входного и выходного напряжения, а также сопротивления R2 (оно же — сопротивление нагрузки ), значение сопротивления R1 находится в соответствии с пунктом 3 статьи «Делитель напряжения«:
Объединив две формулы, находим конечную формулу расчета ёмкости конденсатора схемы бестрансформаторного питания:
где – сопротивление нагрузки, в нашем случае это – сопротивление обмотки реле Р1.
Учитывая, что при работе в переменном напряжении в конденсаторе происходят перезарядные процессы, а также сдвиг фазы тока по отношению к фазе напряжения, необходимо брать конденсатор на напряжение в 1,5…2 раза больше того напряжения, которое подаётся в цепь питания. При сети 220 вольт, конденсатор должен быть рассчитан на рабочее напряжение не менее 400 вольт.
По указанной выше формуле можно рассчитать значение ёмкости схемы бестрансформаторного питания для любого устройства, работающего в режиме постоянной нагрузки. Для работы в условиях переменной нагрузки, меняется также ток и напряжение выходной цепи. Для стабилизации выходного напряжения обычно применяют стабилитроны, или эквивалентные транзисторные схемы, ограничивающие выходное напряжение на необходимом уровне. Одна из таких схем показана на рисунке ниже.

Вся схема включена в сеть 220 вольт постоянно, а реле Р1 включается в цепь и выключается с помощью выключателя S1. В качестве выключателя может быть и полупроводниковый прибор, например транзистор. Транзисторный каскад VT1 включен параллельно нагрузке, он исключает увеличение напряжения во вторичной цепи. Когда нагрузка отключена, ток течёт через транзисторный каскад. Если бы этого каскада не было, то при отключении S1 и отсутствии другой нагрузки, на выводах конденсатора С2 напряжение могло бы достигнуть максимального сетевого – 315 вольт.
Стоит отметить, что при расчёте схем автоматики с реле, необходимо учитывать, что напряжение срабатывания реле, как правило, равно его номинальному (паспортному) значению, а напряжение удержания реле во включенном состоянии приблизительно в 1,5 раза меньше номинального. Поэтому, рассчитывая схему, изображённую выше, оптимально вести расчёт конденсатора для режима удержания, а напряжение стабилизации сделать равным номинальному (или чуть выше номинального). Это позволит работать всей схеме в режиме меньших токов, что повышает надёжность. Таким образом, для расчета емкости конденсатора С1 в схеме с коммутируемой нагрузкой, параметр Uвх мы берём равным не 12 вольт, а в полтора раза меньше – 8 вольт, а для расчёта ограничительного (стабилизирующего) транзисторного каскада – номинальное 12 вольт.
С1 = 1 / ( 2 * 3,14 * 50 * ( (220 * 80) / 8 – 80 ) ) = 1,5 мкФ
В качестве стабилизирующего элемента при малых токах можно использовать стабилитрон. При больших токах стабилитрон не годится – слишком малая у него рассеиваемая мощность. Поэтому в таком случае оптимально использовать транзисторную схему стабилизации напряжения. Расчёт стабилизирующего транзисторного каскада основан на использовании порога открытия биполярного транзистора, при достижении напряжения база-эмиттер 0,65 вольта (на кристалле кремния). Но учтите, что для разных транзисторов это напряжение колеблется в пределах 0,1 вольта, не только по типам, но и по экземплярам транзисторов. Поэтому напряжение стабилизации на практике может немного отличаться от рассчитанного значения.
Расчёт делителя смещения каскада стабилизации проводится всё по тем же формулам делителя напряжения, при известных Uвх.дел. = 12 вольт, Uвых.дел. = 0,65 вольт и токе транзисторного делителя, который должен быть приблизительно в двадцать раз меньше тока протекающего через ёмкость С1. Этот ток легко найти:
Iдел. = Uвх.дел. / (20*Rн) = 12 / (20 * 80) = 0,0075 ампер,
где – сопротивление нагрузки, в нашем случае это – сопротивление обмотки реле Р1, равное 80 Ом.
Номиналы резисторов R1 и R2 определяются по формулам, ранее опубликованным в статье «Делитель напряжения«:
где Rобщ – общее сопротивление резисторов делителя смещения транзистора VT1, которое находится по закону Ома:
Итак: Rобщ = 12 / 0,0075 = 1600 Ом ;
R3 = 0,65 * 1600 / 12 = 86,6 Ом , по номинальному ряду, ближайший номинал – 82 Ом;
R2 = 1600 – 86,6 = 1513,4 Ом , по номинальному ряду, ближайший номинал – 1,5 кОм.
Зная падение напряжения на резисторах и ток делителя, не забудьте рассчитать их габаритную мощность. С запасом, габаритную мощность R2 выбираем в 0,25 Вт, а R3 – в 0,125 Вт. Вообще, вместо резистора R2 лучше поставить стабилитрон, в данном случае это может быть Д814Г, КС211(с любым индексом), Д815Д, или КС212(с любым индексом). Я научил вас рассчитывать резистор намеренно.
Транзистор выбирается также с запасом падающей на его переходе мощности. Как выбирать транзистор в подобных стабилизирующих каскадах, хорошо описано в статье «Компенсационный стабилизатор напряжения«. Для лучшей стабилизации, возможно использование схемы «составного транзистора».
Думаю, что статья своей цели достигла, «разжёвано» всё до каждой мелочи.

http://meanders.ru/c_vmesto_r.shtml

Расчет конденсатора для светодиодов

Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.
Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.
Вот так бы выглядела схема подключения настольной светодиодной лампы. А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.

Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.

Принцип работы схем на балластном конденсаторе

В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.
Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.
Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.
В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.

Расчет гасящего конденсатора для светодиода

Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.
Расчет емкости конденсатора для светодиода:
С(мкФ) = 3200 * Iсд) / ?(Uвх? — Uвых?)
С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В;
Iсд – номинальный ток диода (смотрим в паспортных данных);
Uвх – амплитудное напряжение сети — 320В;
Uвых – номинальное напряжение питания LED.
Можно встретить еще такую формулу:
C = (4,45 * I) / (U — Uд)
Она используется для маломощных нагрузок до 100 мА и до 5В.

Расчет конденсатора для светодиода (калькулятор онлайн):

Для наглядности проведём расчёт нескольких схем подключения.

Подключение одного светодиода

Для расчета емкости конде-ра нам понадобится:

  • Максимальный ток диода – 0,15А;
  • напряжение питания диода – 3,5В;
  • амплитудное напряжение сети — 320В.

Для таких условий параметры конде-ра: 1,5мкФ, 400В.

Подключение нескольких светодиодов

При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.

  • Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
  • сила тока – Iсд * количество параллельных цепочек.

Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.
Напряжение питания – 4 * 3,5В = 14В;
Сила тока цепи – 0,15А * 6 = 0,9А;
Для этой схемы параметры конде-ра: 9мкФ, 400В.

Простая схема блока питания светодиодов с конденсатором

Разберём устройство без трансформаторного блока питания для светодиодов на примере фабричного драйвера LED ламы.

  • R1 – резистор на 1Вт, который уменьшает значимость перепадов напряжения в сети;
  • R2,C2 – конде-р служит в качестве токоограничителя, а резистор для его разрядки после отключения от сети;
  • C3 – сглаживающий конде-р, для уменьшения пульсации света;
  • R3 – служит для ограничения перепадов напряжения после преобразования, но более целесообразно вместо него установить стабилитрон.

Какой конденсатор можно использовать для балласта?
В качестве гасящих конденсаторов для светодиодов используются керамические элементы рассчитанные на 400-500В. Использование электролитических (полярных) конденсаторов недопустимо.
Меры предосторожности
Безтрансформаторные схемы не имеют гальванической развязки. Сила тока цепи при появлении дополнительного сопротивления, например прикосновение рукой с оголённому контакту в цепи, может значительно увеличится, став причиной электротравмы.

ДЛЯ ВАС ПО ТЕМЕЕЩЕ ОТ АВТОРА

Как правильно подключить RGB светодиодную ленту к контроллеру. Правильные схемы с описанием

SMD 3528, 5050, 5630, 5730 параметры и технические характеристики

Правильный расчет резистора для светодиода, подбор резистора по цветовой маркировке + онлайн калькулятор

3 способа замены галогеновых ламп на светодиодные в люстре

КПД светодиодного светильника (светодиод + питание + форм-фактор)

Регулировка яркости LED. Все о диммерах для светодиодных ламп

22 КОММЕНТАРИИ

Не понял, почему в схемах для питания светодиодов емкость балластного конде-ра 0,27 мкФ, а в расчетах 90 мкФ, 150 мкФ. Полагаю, что здесь автор описался и результат должен быть не в микрофарадах, а в нанофарадах.
Спасибо. Была ошибка в расчетах — подправил.
150 мкФ для 150мА для светодиода на 3,5 вольта?! Это огромная болванка, которая ни в какую светодиодную лампу не поместится и гарантировано сожжет светодиод. На вашем калькуляторе в качестве разделительного знака нужно использовать точку, а не запятую. Тогда результат будет адекватным — 1,5 мкФ.
Калькулятор подправили, спасибо за замечание.
доброго дня. классно, почти точно. формула и онлайн работает. в ваших примерах, нет запятой… из-за этого приведённые ёмкости несоизмеримы…
Все работает корректно, пофиксили уже.
В расчете вместо мкФ необходимо пФ*10 в третьей степени
Спасибо, что заметили. Ошибку поправили.
R1 – резистор на 1А, который уменьшает значимость перепадов напряжения в сети;
Может 1Вт, а не 1А.
Конечно, вы правы. Поправили опечатку, спасибо.
Как добавить в эту схему регулировку яркости7
Поставить lm317 или иной регулятор.
Применимы ли эти рассчеты для COB матриц со встроенным драйвером?
Не секрет, что почти все матрицы с Алиэкспресса жутко мерцают. Чтобы это мерцание убрать люди рекомендуют ставить конденсатор. Как его правильно рассчитать? предполагаемая мощность светодиода 50 и 100 Вт.
Примерно 1 мкф на 1 Вт.
Матрица питается постоянкой или переменкой?
Если постоянкой то полярный кондер с запасом по напряжению в 2 раза.
Ну обычно народ не морочится и питает переменкой (я так понимаю, отсюда и мерцание)
Даже выпрямленная переменка дает мерцание, т.к. там импульсы в питании. Потому ставят сглаживающий кондер.
Уж коли у нас зашел разговор про постоянку и переменку, вот такой вопрос. Есть светодиодные матрицы бездрайверные, точнее такие, у которых драйвер распаян на подложке (в основном мерцание именно на них). И есть матрицы с отдельным драйвером, выдающим боле-менее постоянное напряжение. Вопрос: что будет мерцать меньше при прочих равных? Покупка таких матриц с драйверами может избавить меня от мороки с подбором кандера и устранением мерцания? Мы сейчас говорим, разумеется, о матрицах и драйверах с алиэкспресс, Cree я чисто финансово не потяну, какими бы замечательными они не были.
Кстати. Полярные конденсаторы отлично работают в таких схемах.
Но есть нюанс. Из полярного надо сделать неполярный кондер, соединив их последовательно одноименным полюсом, например минусовыми. И вуаля у нас в руках неполярный кондер.
Второй нюанс, емкость итоговая в 2 раза ниже чем емкость соединенных полярников. Т.е. если соединили 3.3 + 3.3 то итог 1.65
Кирилл, здравствуйте! По поводу «2 полярных вместо 1 однополярного» есть «подводные камни» и это обязательно учитывать нужно.
Первое: алюминиевые электролитические конденсаторы (а именно о них и идёт речь, а не о танталовых, оксидно-полупроводниковых, ниобиевых и прочих экзотических и очень дорогих) имеют большой разброс номинальной ёмкости, соответственно и падение напряжения на встречно-последовательно соединённых конденсаторах будет различаться. Для выравнивания падений напряжений на конденсаторах рекомендуется шунтировать их резисторами одинакового сопротивления.
Второе: для создания цепи разряда конденсаторов рекомендуется шунтировать каждый встречно-параллельным подключением диодов.
Третье: для уменьшения поляризации диэлектрика таких конденсаторов рекомендуется на среднюю точку такой схемы включения подавать постоянное напряжение. Эти факторы общеизвестны и игнорировать их не следует. Так что не всё так просто в датском королевстве с учётом контингента комментирующих.
Здравствуйте, посоветуйте пож. какой правильный выпрямитель-стабилизатор мне сделать для замены лампы накаливания в фаре головного света скутера на сведодиодную 40 W (2 паралельно соединённые матрицы по 12V и 20W) так как на фару подаётся от10 до 14 V переменного крайне нестабильногонапряжения в зависимости от оборотов двигателя, а для светодиодов крайне важно стабильное постоянное напряжение 10-11 V с ровной амплитудой напряжения и тока! Спасибо заранее и если вас не затруднит покажите схему с указанием номиналов деталей,спасибо!
Для этого есть стабилизатор L7812 он выглядит как транзистор , с начало делаешь мост потом L7812 с лева вход (1) средина общий(2) с право выход (3) мину у него общий на вход и на выход.
Почему то никто не обратил внимания на начало статьи:
1. «конде-р является фильтром тока» — неверно! Конде-р является реактивным сопротивлением.
2. «несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода» — неверно!
До тех пор пока не преодолен потенциальный барьер PN перехода в прямом направлении никакого тока не будет! Т.е. для разных по цвету LED напряжения разные, но больше 0.7В
Конденсаторный балласт для LED это реактивный делитель напряжения. А максимальные мгновенные токи в таких схемах могут достигать много больших величин чем средние рассчитанные. При выборе диодов моста это надо учитывать, равно как ставить токоограничивающий резистор в цепи переменного тока. Защитный стабилитрон по выходу моста тоже не лишняя деталь!

http://svetodiodinfo.ru/texnicheskie-momenty/raschet-kondensatora-dlya-svetodioda.html

Радиоконструктору

Расчет емкости гасящего конденсатора для паяльника

В статье приводится методика расчета емкости гасящего конденсатора и напряжения но его выводах в цепи активной нагрузки, в частности паяльника, которая позволяет существенно сократить объем вычислений ,сведя их до минимума, что упрощает расчеты и сокращает время , необходимое для выбора гасящего конденсатора требуемой емкости и соответствующего номинального напряжения.
В приведенном материале предлагается методика расчета емкости конденсатора и напряжения на нем при его последовательном включении с паяльником, причем рассматриваются два варианта. В первом варианте необходимо уменьшить мощность паяльника на требуемую величину с помощью гасящего конденсатора, а во втором — включить низковольтный паяльник в сеть 220 В, погасив излишек напряжения конденсатором.
Осуществление первого варианта ( рис.1) предполагает два вычисления с исходными данными (ток, потребляемый паяльником из сети I и сопротивление паяльника R1), затем два промежуточных вычисления (ток, потребляемый паяльником при меньшей его мощности на требуемую величину II и емкостное сопротивление конденсатора Rc) и, наконец, два последних вычисления, которые дают искомые

величины емкость конденсатора С на частоте 50 Гц и напряжение на выводах конденсатора Uc). Таким образом, для решения задачи по первому варианту необходимо осуществить 6 вычислений.
По второму варианту (рис.2), чтобы решить задачу, необходимо произвести с исходными данными два вычисления, как и в первом варианте, а именно: найти ток
I, потребляемый паяльником из сети, и сопротивление паяльника R, затем следует одно промежуточное вычисление, из которого, как и в первом варианте, находится емкостное сопротивление конденсатора Rc и, наконец, два последних вычисления, из которых определяют емкость конденсатора С при частоте 50 Гц и на-

пряжение на выводах конденсатора Uc. Таким образом, для решения задачи по второму варианту необходимо осуществить пять вычислений.
Решение задач по обоим вариантам требует определенных затрат во времени. Методика не позволяет сразу в одно действие, минуя исходные и промежуточные расчеты, определить емкость гасящего конденсатора и соответственно напряжение на его выводах.
Удалось найти выражения, которые позволяют сразу в одно действие вычислить емкость гасящего конденсатора, а затем напряжение на его выводах для первого варианта. Подобным образом получено выражение для определения емкости гасящего конденсатора для второго варианта.
Вариант 1. Располагаем паяльником 100 Вт 220 В и желаем эксплуатировать его при мощности 60 Вт, используя при этом последовательно включенный с ним гасящий конденсатор. Исходные данные: номинальная мощность паяльника Р = 100 Вт; номинальное напряжение сети U = 220 В; требуемая мощность паяльника Р1 = 60 Вт. Требуется вычислить емкость конденсатора и напряжение на его выводах согласно рис.1. Формула для расчета емкости гасящего конденсатора имеет вид:
С = Р•10 6 /2?f1U 2 (P/P1 — 1) 0,5 (мкФ).
При частоте питающей сети = 50 Гц формула принимает вид:
С =3184,71 Р/U 2 (Р/Р1— 1) 0,5 =
=3184,71-100 /220 2 ( 100/60-1 )=8,06 мкФ.
В контрольном примере емкость конденсатора равняется 8,1 мкФ, т.е. имеем полное совпадение результата. Напряжение на выводах конденсатора равно
При частоте сети f1 = 50 Гц формула упрощается:
Uc = 3184,71 (PP1) 0,5 /CU =
= 3184,71(60•100) 0,5 /8,06 • 220 =
В контрольном примере Uc = 138 В, т.е. практическое совпадение результата. Таким образом, для решения задачи по первому варианту вместо шести вычислений нужно сделать всего два (без промежуточных расчетов). При необходимости емкостное сопротивление конденсатора можно сразу вычислить по формуле:
Rc = U 2 (P/P, — 1) 0,5 /Р =
= 220 2 ( 100/60 — 1) 0,5 /100 = 395,2 Ом.
В контрольном примере Rc = 394 Ом, т.е. практическое совпадение.
Вариант 2. Располагаем паяльником мощностью 25 Вт, напряжением 42 В и хотим включить его в сеть 220 В. Необходимо рассчитать емкость гасящего конденсатора, последовательно включенного в цепь паяльника, и напряжение на его выводах согласно рис.2. Исходные данные: номинальная емкость паяльника Р = 25 Вт; номинальное напряжение Ur = 42 В; напряжение сети U = 220 В. Формула для расчета емкости конденсатора имеет вид:
С = Р•10 6 /2?f1Ur(U 2 — Ur 2 ) 0,5 мкФ.
При частоте сети f1 = 50 Гц формула принимает вид:
С = 3184,71 P/Ur(U 2 — Ur 2 ) 0,5 =
= 3184,71 -25/42(220 2 — 42 2 ) =
Напряжение на выводах конденсатора легко определить, пользуясь исходными данными, по теореме Пифагора:
Uc = (U 2 — Ur 2 ) 0,5 = (220 2 — 42 2 ) =
Таким образом, для решения задачи по второму варианту вместо пяти вычислений необходимо осуществить только два. При необходимости величину емкостного сопротивления конденсатора, для данного варианта, можно определить по формуле:
Rc = Ur(U 2 — Ur 2 ) 0,5 /P =
= 42(220 2 — 42 2 )/25 = 362,88 Ом.
По контрольному примеру Rc = 363 Ом. Гасящий конденсатор С на приведенных рисунках желательно зашунтировать разрядным резистором МЛТ-0,5 номиналом 300. 500 кОм.
Выводы. Предлагаемая методика расчета емкости гасящего конденсатора и напряжения на его выводах позволяет существенно сократить объем вычислений, сведя их до минимума.

http://radiopolyus.ru/radiolicbez/39-radiokonstruktoru/290-raschet-emkosti-gasyashhego-kondensatora-dlya-payalnika

Техническая библиотека lib.qrz.ru

СЕТЕВОЙ ИСТОЧНИК ПИТАНИЯ С ГАСЯЩИМ КОНДЕНСАТОРОМ
Во многих из описанных выше устройств использовались бестрансформаторные источники питания с гасящим конденсатором. Они удобны своей простотой, малыми габаритами и массой, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В. О том, как правильно рассчитать такой источник, рассказывается в данном разделе.
В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно соединенные конденсатор и нагрузка. Рассмотрим вначале работу источника с чисто резистивной нагрузкой (рис. 123,а).

В радиолюбительской практике часто используют источник, в котором гасящий конденсатор включен в сеть последовательно с

диодным мостом, а нагрузка, зашунтированная другим конденсатором, питается от выходной диагонали моста (рис. 124). В этом случае цепь становится резко нелинейной и форма тока, протекающего через мост и гасящий конденсатор, будет отличаться от
синусоидальной. Из-за этого представленный выше расчет оказывается неверным.
Каковы процессы, происходящие в источнике со сглаживающим конденсатором С2 емкостью, достаточной для того, чтобы считать пульсации выходного напряжения пренебрежимо малыми? Для гасящего конденсатора С1 диодный мост (вместе с С2 и Rн) в установившемся режиме представляет собой некий эквивалент симметричного стабилитрона. При напряжении на этом эквиваленте, меньшем некоторого значения (оно практически равно напряжению Uвых на конденсаторе С2), мост закрыт и ток через него не проходит, при большем — через открытый мост течет ток, не давая увеличиваться напряжению на входе моста.
Рассмотрение начнем с момента t1, когда напряжение сети максимально (рис. 125). Конденсатор С1 заряжен до амплитудного напряжения сети Uс.амп за вычетом напряжения на диодном мосте Uм , примерно равного Uвых. Ток через конденсатор С1 и закрытый мост равен нулю. Напряжение в сети уменьшается по косинусоидальному закону (график 1), на мосте также уменьшается (график 2), а напряжение на конденсаторе С1 не меняется.

Ток конденсатора останется нулевым до тех пор, пока напряжение на диодном мосте, сменив знак на противоположный, не достигнет значения -Uвых (момент t2). В этот момент появится скачком ток Ic1 через конденсатор С1 и мост. Начиная с момента t2, напряжение на мосте не меняется, а ток определяется скоростью изменения напряжения сети и, следовательно, будет точно таким же, как если бы к сети был подключен только конденсатор С1 (график 3).
Когда напряжение сети достигнет отрицательного амплитудного значения (момент tз), ток через конденсатор С1 снова станет равным нулю. Далее процесс повторяется каждый полупериод.
Ток через мост протекает лишь в интервале времени t2-t3, его среднее значение может быть рассчитано как площадь заштрихованной части

При отсутствии стабилитрона на необходимое напряжение Uвых;
допускающего рассчитанный максимальный ток стабилизации, можно соединить несколько стабилитронов на меньшее напряжение последовательно.
Подставлять в формулу (4) минимальный ток нагрузки Iн nun следует лишь тогда, когда этот ток длителен — единицы секунд и более. При кратковременном минимальном токе нагрузки (доли секунды) его надо заменить средним (по времени) током нагрузки. Если стабилитрон допускает ток, больший рассчитанного по формуле (4), целесообразно использовать гасящий конденсатор несколько

источника по схеме рис. 124 зарядка этого конденсатора длится четверть периода напряжения сети, и столько же — разрядка. При таком приближении двойное напряжение пульсации 2Uп (размах ) равно: 2ип=0,25Iн mах/fС.
Аналогично можно считать, что для источника по схеме рис. 126 зарядка длится то же время, а разрядка — три четверти периода:
Для выходного напряжения менее 100 В реально зарядка длится большее время, разрядка — меньшее, и эти выражения дают заметно завышенный результат, поэтому расчет емкости сглаживающего конденсатора по полученным из них формулам обеспечивает некоторый запас: С=5Iнmax/2Uп (для рис. 124); С= 15Iнmax/2Uп (для рис. 126), где ток — в миллиамперах, емкость — в микрофарадах, напряжение — в вольтах.
Хотя стабилитрон и уменьшает напряжение пульсации, использовать сглаживающий конденсатор емкостью, менее рассчитанной, не рекомендуется. В ранее рассмотренном примере при размахе пульсации 0,2 В емкость сглаживающего конденсатора равна:
Для ограничения броска тока через диоды выпрямительного моста в момент включения источника в сеть последовательно с гасящим конденсатором необходимо включать токоограничивающий резистор. Чем меньше сопротивление этого резистора, тем меньше потери в нем. Для диодного моста КЦ407А или моста из диодов КД103А достаточно резистора сопротивлением 36 Ом.
Рассеиваемую на нем среднюю мощность Р можно определить по формуле: Р= 5,6С1^2R, где емкость — в микрофарадах, сопротивление -в омах, мощность — в милливаттах. Для рассмотренного выше примера P=5,6*0,39^236=30 мВт. Для надежности (ведь в момент включения к резистору может быть приложено амплитудное напряжение сети) рекомендуется использовать резистор мощностью не менее 0,5 Вт.
Для того, чтобы исключить возможность поражения электротоком при налаживании устройств с рассматриваемыми источниками, питать их следует не от сети, а от сетевого лабораторного низковольтного блока питания через токоограничительный резистор. Выходное напряжение лабораторного блока устанавливают больше напряжения питания налаживаемого устройства настолько, чтобы ток через токоограничительный резистор был близок к Iст min+ Iнmax.
Иногда удобно использовать в роли токоограничительного резистор источника, ограничивающий бросок тока через диоды выпрямительного моста. В этом случае достаточно замкнуть выводы

(рис. 130) на ток нагрузки до 0,3 А и источник бесперебойного питания для электронно-механических часов (рис. 131).
Делитель напряжения пятивольтового источника состоит из бумажного конденсатора С1 и двух оксидных С2 и СЗ, образующих нижнее по схеме неполярное плечо емкостью 100 мкф. Поляризующими диодами для оксидной пары служат левые по схеме диоды моста. При номиналах элементов, указанных на схеме, ток замыкания (при Rн=O) равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки — 27 В.
Электронно-механические часы обычно питают от одного гальва
нического элемента напряжением 1,5 В. Предлагаемый источник вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА. Напряжение, снятое с делителя С1С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.
Транзистор VT1, включенный эмиттерным повторителем, и гальванический элемент G1 составляют стабилизатор напряжения. На выходе источника будет напряжение элемента минус падение напряжения на эмиттерном переходе транзистора.
Ток, потребляемый от элемента G1 при наличии сетевого напряжения, меньше тока нагрузки в h21э раз, что существенно продлевает срок службы элемента. Практически это означает, что элемент приходится заменять не из-за его разрядки током нагрузки, а вследствие других причин — саморазрядки, высыхания электролита и т. п.
В случае пропадания напряжения в сети транзистор выходит из режима эмиттерного повторителя и нагрузку питает гальванический .элемент G1 через открытый эмиттерный переход. После появления сетевого напряжения транзистор возвращается в режим эмиттерного повторителя и нагрузка переходит на питание от сети. Конденсатор С4 обеспечивает нормальную работу часов при глубокой разрядке элемента G1.
Диоды Д223 можно заменить на любые другие, транзистор МП41А — на любой германиевый структуры р-n-р. Элемент G1
лучше использовать алкалиновый, например, Duracell, Energizer. Реальный срок эксплуатации такого элемента в блоке питания может достигать 10 лет.
И последнее. Конструкция бестрансформаторных источников и устройств, питающихся от них, должна исключать возможность прикосновения к любым проводникам в процессе эксплуатации. Особое внимание нужно уделить изоляции органов управления.

13. Сетевой источник питания с гасящим конденсатором.

http://lib.qrz.ru/node/6193

1 звезда2 звезды3 звезды4 звезды5 звезд (Поки оцінок немає)
Загрузка...
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector