Быстрые диоды в выпрямителе

Выпрямитель для усилителя или

Многие говорят что в выпрямителях усилителей должны использоваться только лишь диоды Шоттки, или сверхбыстрые диоды (\»суперфаст\» — это если по-русски ). Если поставить обычные \»медленные\» диоды, то Великий Аудиофильский Дух обидится и хорошего звука вам не видать! На наше счастье, Великий Аудиофильский Дух может навредить только тем, кто в него верит. Давайте попробуем разобраться в необходимости применения таких диодов без привлечения эзотерики, а при помощи одной лишь науки и техники.
Единственная претензия, предъявляемая к диодам, состоит в том, что они медленно закрываются, и при этом через них будто бы протекает обратный ток, разряжающий конденсаторы фильтра. Говорят, что это происходит примерно так, как показано на рис.1 красной линией.

Рис. 1. Красная линия — ток разряда диода, если он (диод) медленно закрывается.
Называют две основных причины протекания обратного тока:
1. Рассасывание объемного заряда в базе диода, в течение которого диод еще не закрылся.
2. Заряд емкости обратно смещенного n-p перехода, когда диод уже закрылся.
Мы разберем обе эти причины. Но сначала давайте подумаем вот о чем: если бы через диод протекал бы большой обратный ток (даже такой, как на рисунке 1), то конденсаторы фильтра разряжались бы сразу после своей зарядки, и напряжения питания никакого бы и не было! Раз выпрямители работают даже на медленных диодах, то разряд этот не такой уж большой и страшный (и почему-то в профессиональных методах рассчета выпрямителей про этот самый обратный ток вообще ничего не говорится!).
Начнем с эксперимента — практика, как известно, — критерий истины. Соберем схему простейшего выпрямителя с обычным \»медленным\» диодом (рис.2):

Рис. 2. Схема выпрямителя.
Вот как это выглядит в реальности:

Рис. 3. Фото выпрямителя.
Посмотрим на осциллографе ток через диод, ток довольно большой — максимальная амплитуда 12 ампер, что соответствует работе диода в реальных условиях:

Рис.4 Ток через диод.
Чего-то не видно этих самых токов разряда. Для большей наглядности изменим масштаб и добавим на осциллограмму линию развертки, чтобы был виден ноль, и если бы график нырял вниз вследствие тока разряда, это было бы хорошо заметно (рис.5):

Рис.5 Тот же самый ток через тот же самый диод.
Сравните рис.1 и рис.5. В реальности не хватает той части, которая соответствует разряду конденсатора обратным током диода. Значит ли это, что такого тока нет вообще? Нет, обратный ток есть, просто он настолько мизерный, что обнаружить его обычным осциллографом в таком простом эксперименте невозможно (я даже так с ходу и не скажу, как можно измерить ток разряда в моем выпрямителе).
Давайте попробуем прикинуть, какой разрядный ток будет протекать через диод и насколько этот ток разрядит конденсатор фильтра. Я использую упрощенный расчет, так как при полном правильном расчете не обойтись без интегралов и прочей высшей математики. Упрощение сильно снизит точность (и завысит результаты!), но порядок цифр будет более-менее верным, и мы его наглядно представим.
Для простоты давайте рассчитаем мой выпрямитель, который я исследовал.
Причина 1.
Рассасывание объемного заряда в базе диода, вследствие чего он остается некоторое время в открытом состоянии. Время рассасывания возьмем 10 микросекунд. Это весьма большое время и у большинства диодов оно заметно меньше. Принцип расчета показан на рис. 6.

Рис.6. Обратный ток диода и обратное напряжение, вызывающее этот ток.
Итак, какое-то время диод открыт в прямом направлении и проводит прямой ток. После чего он должен закрыться, чтобы не пропустить ток обратный. Но диод не закрывается, и начинает пропускать обратный ток, показанный на рис.6 внизу красной линией. Ток протекает в течение времени , равному времени рассасывания, т.е. у нас = 10 мкс. При этом к диоду приложено обратное напряжение , из-за которого на самом деле и протекает обратный ток (а из-за чего еще ему протекать?).
Если мы узнаем , то можно будет определить и ток, а зная ток и время, которое он протекает – определить разряд конденсатора фильтра.
Поехали. Посмотрим, что там делается на самом деле – реальная осциллограмма на рис.7 (а линии на ней довольно условны):

Рис. 7. Осциллограмма напряжения и тока диода с необходимыми построениями.
Для нахождения определимся со временем и фазовыми углами. Находим цену деления по горизонтали: 360 градусов = 50 делений, значит одно деление 7,2 градуса. От начала периода напряжения до конца протекания тока диода:
Это начало обратного тока диода. Обратный ток длится =10 мксек. Переведем секунды в градусы: один период синусоиды 360 градусов = 20 миллисек, а 10 мкс — Х. Из пропорции находим, что Х = 10 мкс = 0,18 градуса. Следовательно, конец протекания обратного ток диода – 136,98 градуса.
Итак, – это разность напряжений между точками «а» и «б» на рисунках 6 и 7. Напряжение в точке «а»:
Напряжение в точке «б»:
Теперь найдем ток через диод. Объемное сопротивление базы Rб мощных диодов примерно равно 0,05 Ом. Ток по закону Ома:
Ну а теперь посмотрим, насколько же разряжается конденсатор фильтра при разряде током 1,6 А в течение 10 мкс:
На самом деле конденсатор разрядится намного меньше (из-за того, что ток не все время остается максимальным). Но и то, сравните напряжение на заряженном конденсаторе = 28,2 вольта и эти несчастные 1,6 мВ! Конечно их будет незаметно, ведь это 0,006% от напряжения на конденсаторе.
Итак, можем ли мы пренебречь разрядом конденсатора на 0,006%? Я так думаю, что можем. Если же поставить быстрый диод с временем рассасывания 100 нс, то разряд конденсатора уменьшится раз в 100 и будет равен 0,00006%. Выигрыш – ну просто обалденный. А народ еще спорит, какие диоды лучше — с временем восстановления 50 нс или все же подойдут 70 нс диоды!
В чем заключается упрощение расчета? В том, что на самом деле обратное напряжение на диоде растет медленно, и обратный ток тоже растет медленно и имеет примерно такую форму, как на рис. 6 (т.е. было неправильно делить максимальное напряжение на сопротивление). Поэтому максимальный ток на самом деле будет раз в пять-десять меньше, чем мы посчитали. И максимальным он будет не все время, а лишь чуть-чуть. И разряд конденсатора — тоже будет меньше в несколько раз.
Причина 2.
Обратный ток через емкость запертого диода.
Прежде чем рассуждать о емкостном токе, вспомним, что существует такая схема включения диодов моста (рис.8), и она имеет ряд преимуществ перед обыкновенной.

Рис.8. Диодный мост, шунтированный конденсаторами.
В этой схеме емкость конденсаторов раз в 30 превышает емкость диодов, значит и обратный ток через конденсаторы течет в 30 раз больше (т.е. как бы обратный ток через емкость диода повышается в 30 раз), но никто почему-то не плачет по этому поводу.
Но у нас просто одиночный диод, его емкость порядка 300 пикофарад. Для того, чтобы определить, насколько заряд этой емкости «посадит» конденсатор фильтра, воспользуемся формулой:
Тогда, учитывая, что максимальное напряжение конденсатора 28,2 В:
Это в 1000 раз меньше, чем из-за объемного заряда и на такой мизер внимания обращать вообще нельзя! Точно также, при подключении конденсаторов параллельно диодам, снижение напряжение на конденсаторе фильтра будет 30. 50 мкВ — подключайте конденсаторы на здоровье!
Вот и все. Никаких других объективных причин влияния \»медленности\» диода на работу выпрямителя не существует! (разве что ВЧ помехи про которые ниже). Что там думает себе Великий Аудиофильский Дух — нам по барабану, давайте обсудим результаты.
Итак, что же получается? Обыкновенные «медленные» диоды никакого заметного разряда конденсаторов фильтра и не вызывают! А как же тогда быть с утверждениями: «я заменил обычные диоды на ультрафаст, и усилитель зазвучал!»? Ну, во-первых, на это есть первый закон самовнушения: «Если в системе заменить даже самый маленький проводок, система сразу зазвучит лучше». Этот закон объясняет 80% всех наших улучшений звучания (так хорошо слышимых на слух). На самом деле, никакого ужасного разряда конденсаторов «медленными» диодами не происходит, и значит не происходит никакого изменения звука от применения ультрафаст диодов. Это все аудиофильские сказки. Кроме того — самое главное — разряд конденсаторов питания всего лишь уменьшает напряжение питания! Ну и как это скажестя на качестве звучания?
А как же быть с тем, что в импульсных блоках питания, например компьютерных, устанавливают ультрафасты или Шоттки? Все верно. На тех частотах, на которых работают импульсные блоки, время закрывания диода будет равно уже порядка 1/3 периода (а не 1/2000, как на частоте 50 Гц), и это слишком много. Кроме того, импульсные сигналы имеют крутые фронты, и там напряжение на диоде изменяется резко, поэтому высокое обратное напряжение появляется сразу, что вызывает высокие обратные токи.
Есть и отрицательная сторона \»скорости\» диода. Отпирание/запирание диодов создает импульсы тока с довольно резкими фронтами, а значит и создает широкий спектр помех, который излучается выпрямителем, проводами, идущими к нему от трансформатора и проводами, идущими к конденсатору фильтра. И эти помехи попадают в усилитель и подгружают его высокими частотами (до сотен килогерц). Поэтому некоторые специалисты (например, профессор Никитин) даже советуют подключать выпрямитель к трансформатору через небольшой дроссель, это замедлит процессы отпирания/запирания диодов и снизит помехи.
Мне нечем измерить высокочастотную помеху, вот низкочастотная часть спектра тока диода моего выпрямителя — до 20 кГц.

Рис. 9. Спектр тока диода.
Красная линия — спектр тока непосредственно выпрямителя, а синяя — при включении последовательно с диодом катушки с небольшой индуктивностью, что снижает уровень ВЧ составляющих тока, а как раз именно они хорошо излучаются в эфир в виде помех.
Более быстрое отпирание/запирание \»быстрых\» диодов даст импульсы тока с более резкими фронтами, а значит и спектр помех, излучаемых выпрямителем, станет более широким. И с этими помехами будет труднее бороться, а попав в усилитель, они сильнее перегрузят его высокими частотами, чем если бы использовать «обыкновенные» диоды. Эта перегрузка на ВЧ (теперь уже до мегагерц) дает интермодуляции с усиливаемым сигналом и вполне может быть заметна на слух как изменение звучания. Например именно таким способом (подмешиванием ультразвуковых сигналов частоты дискретизации) пользовались некоторые изготовители карманых CD плееров. При этом субъективно увеличивалось количество высоких частот и такую \»фичу\» даже называли что-то типа \»живые высокие\». Натуральность звука на самом деле при этом уменьшалась.
Но на самом деле, есть своя польза от применения в выпрямителях диодов Шоттки. Дело в том, что прямое падение напряжения на них гораздо меньше, чем на обычных диодах с n-p переходом, а значит потери напряжения в выпрямителе будут меньше и больше напряжения уйдет в питание усилителя. В моем тестовом выпрямителе на обычном диоде при токе 12 А падало 1,2 вольт, а на диоде Шоттки — 0,6 вольт. Значит на диодном мосте в первом случае теряется 2,4 В, а во втором только 1,2 В. Скажете: \»Подумаешь мелочь, ерунда 1 вольт!\». Не всегда мелочь и ерунда. Если у вас напряжение питания усилителя +-60 вольт, то этот самый 1 вольт действительно ерунда. А если питание +-24 вольта? Давайте посчитаем. Просадка напряжения выпрямителя под нагрузкой порядка 80% от хх. В вольтах это получается 19,2. Падение напряжения на диодах 2,4 вольта. Падение напряжения на выходом каскаде усилителя, допустим, 4 вольта. Значит, на выходе усилителя получаем 19,2 — 2,4 — 4 = 12,8 вольт амплитуды. На синусе, на нагрузке 6 Ом это будет всего лишь 13,6 Вт. Если же использовать диоды Шоттки, то максимальное напряжение на выходе: 19,2 — 1,2 — 4 = 14 В, и синусная мощность уже 16,3 Вт. Чуть-чуть, но больше. Посмотрим на это чуть-чуть повнимательнее.
Музыкальный сигнал имеет импульсную структуру с резкими всплесками:

Рис. 10. Осциллограмма музыкального сигнала.
Большей частью средний уровень сигнала невысокий и легко воспроизводится усилителем. А вот максимальные значения импульсов. В нашем примере если максимальная выходная мощность усилителя 16 Вт (с диодами Шоттки), то он полностью воспроизводит пики сигнала (рис.10). А с обычными диодами, когда выходная мощность 13 Вт, пики обрезаются, как показано на рис. 10 красной линией (ну не хватает мощности для них!). Психоакустика установила, что если эти редкие всплески вот так обрезать, то сознание этого не заметит, то есть мы не будем слышать явных искажений. Но с субьективной стороны при прослушивании мы будем ощущать, что \»что-то не то\» — отсутствует легкость, воздушность, естественность, прозрачность и прочие \»чувственные\» части звука. И в таком случае действительно замена обычных диодов на диоды Шоттки существенно улучшает звучание! И именно с той \»необъяснимой\» субъективной стороны. На самом же деле — никакой мистики, никакого волшебства, чистая физика! Такой вариант событий встречается, на самом деле, довольно часто, и довольно часто применение диодов Шоттки оправдано и технически, и с точки зрения улучшения звучания усилителей.
Выходит, что суперфаст диоды на самом деле в выпрямителе для усилителя и нафиг не нужны и никакой реальной пользы от них нет (зато они более \»нежные\» и хуже выдерживают перегрузки по току в отличие от \»медленных\»). А вот диоды Шоттки иногда бывают очень даже полезны, но не быстродействием своим, а низким прямым падением напряжения. Естествено, это справедливо только для \»аналоговых\» выпрямителей, работающих с частотой сети 50 Гц. Но с другой стороны, если говорить о высококачественных усилителях, то только такие источники питания туда и нужны — импульсные источники и Hi-Fi несовместимы!

http://www.electroclub.info/article/fast_diod.htm

The Home Of Easy Tube Amplifier

Это сайт о моем хобби – аудио оборудовании на Лампах. . . . . . . . . . . . . . . . . . . . . . . . . . \»I was the Walrus, But now I\’m John\» – John Lennon 1970

Post navigation

Заметки по поводу “моста”

В данном конкретном случае замечания будут не по поводу так называемого “Русского” моста и даже не по поводу упомянутого ранее “Золотого” моста.
В ходе проектирования блоков питания для мощных транзисторных усилителей я столкнулся с интересным видом помех, генерируемых двухполупериодным мостовым выпрямителем (схема Греца). Обычно в литературе причину возникновения этих помех объясняют примерно так —
“…Наличие инерционности полупроводниковых диодов приводит к появлению кратковременного короткого замыкания первичной сети через все одновременно открытые диоды выпрямителя и наличие нулевого значения напряжения на выходе устройства на интервале времени рассасывания зарядов (tр). Резкое запирание выпрямительного диода приводит к появлению высокочастотных колебательных процессов, частота которых определяется паразитными емкостями диодов, ёмкостью монтажа, соединительных линий и их индуктивными составляющими. Временные диаграммы иллюстрируют работу выпрямителя, когда период частоты переменного напряжения сети соизмерим с интервалом времени tр, что может иметь место в высокочастотных преобразователях с синусоидальным напряжением…”

В нашем случае выпрямитель работает на емкостную нагрузку, и очевидно, что помехи связаны с несинусоидальной формой тока через диоды и с разбросом характеристик диодов в выпрямительном мосте. При этом длительность протекания тока через каждый из выпрямительных диодов меньше, чем при работе на активную нагрузку. С уменьшением уровня пульсаций выходного напряжения выпрямителя длительность открытого состояния диодов уменьшается, а амплитуда тока через них возрастает, что приводит к увеличению высокочастотных помех. (То есть – чем больше емкость первого конденсатора фильтра – тем шире ВЧ спектр помехи).

На слух такая помеха проявляется как некий легкий, но навязчивый фон с удвоенной частотой сети (100 Гц). Уровень фона не зависит от положения регулятора громкости. “Поймать” эту помеху на выходе усилителя довольно затруднительно, поскольку ее уровень черезвычайно мал, около 0.5…1mV. На выходе источника питания эта помеха практически незаметна. Но ее вполне отчетливо можно увидеть с помощью осциллографа, присоединив его щуп на выход “-” диодного моста, а “землю” на какую нибудь удаленную от блока питания шину. Расстояние между точками подсоединения осциллографа должно быть не менее 20 см, фактически измерение делается на короткозамкнутом участке цепи. Вот как “она” выглядит:

Верхний луч – пульсации выпрямленного напряжения на первом конденсаторе фильтра.
Еще несколько картинок.
После шунтирования электролитических конденсаторов фильтра питания полипропиленовыми конденсаторами –

После изменения топологии фильтра по схеме С-RC-

Как видно, после предпринятых мер помеха, с одной стороны, несколько уменьшилась, а с другой – в ее спектре появилась значительная высокочастотная составляющая.
Нужно было применить метод, ограничивающий спектр излучаемой помехи, иными словами, нужно понизить частоты паразитных колебаний. Для этого есть известный старинный “фокус” – подключить параллельно каждому из диодов моста конденсаторы емкостью в несколько тысяч пикофарад (на практике – от 4700 до 47000 пФ), что снижает резонансную частоту паразитного контура в несколько десятков – сотен раз.
Если принять во внимание индуктивные составляющие сопротивления подводящих проводов питающих цепей выпрямителя, то снижение уровня помех можно достичь включением параллельно входным выводам моста аналогичного конденсатора. Наиболее универсальным и более рациональным способом снижения уровня помех является одновременно уменьшение частоты собственных колебаний паразитного контура и уменьшение добротности паразитного контура. Это реализуется заменой шунтирующих конденсаторов на последовательные RC- цепи. Оптимальное значение сопротивления резисторов этих цепей проще всего определить экспериментально, в зависимости от мощности выпрямителя оно может быть в пределах 10…100 Ом.
Возможен и другой способ снижения частоты паразитных колебаний, который обеспечивает уменьшение амплитуды импульса тока IДСm . Он заключается в искусственном увеличении индуктивной составляющей сопротивления подводящих проводников с помощью ферритовых колец малого диаметра, надетых непосредственно на выводы выпрямительного диода. При этом возрастает длительность интервала спада тока через запирающийся диод, что вызывает понижение верхней границы частотного спектра помехи.
Если же выпрямитель работает с напряжением частотой 50 Гц, диоды моста объединены в общий корпус и ток нагрузки точно не определен, то наиболее универсальным и простым методом подавления помех является является шунтирование диодов моста конденсаторами –

Как видно, после проведения операции по шунтированию помеха существенно уменьшилась и ее спектр стал уже. Но – каким же образом полностью избавиться от нее?
Способов – несколько, и применять их нужно одновременно. Во-первых, диоды необходимо шунтировать конденсаторами, а точка соединения корпуса усилителя и “общего” должна находиться рядом с “общим” выводом диодного моста. Во-вторых, общий вывод диодного моста соединяется с общей шиной (и корпусом) через небольшой дроссель, намотанный толстым проводом на ферритовом кольце. В третьих – и это очень важно – в усилителе, блок питания которого выполнен по мостовой схеме, точка соединения корпуса и “общего” -это единственно возможная точка объединения “земель”, ни в каком другом месте корпус (шасси) не должен соединяться с “общим”. От этой точки разводится “общий” на питание различных модулей (если их несколько), на планки выходных разъемов. В этой же точке объединяются “общие” левого и правого каналов усилителя. В четвертых, фильтр должен быть выполнен по топологии С-RC, причем первая емкость фильтра не должны быть черезмерно большой, хорошее правило – 1000 мкФ на 1A потребляемого тока. В результате –

Апрель 2013 год г.Владивосток
PS Две проблемы
Удивительно, что многие, кто сталкивался с проблемой возникновения помех в блоке питания и прочитали мою заметку, не заметили двойственный характер возникновения проблемы. Во-первых, на что обычно все обращают внимание – это так называемый “дребезг” диодов, возникающий при их закрытии. Эта особенность довольно широко обсуждается на форумах, но к выпрямителям, сетевого напряжения частотой 50 (60) Гц в общем-то не имеет особого отношения. Во-вторых, что обычно упускают из виду, и на что хотел бы обратить внимание я – это взаимодействие трансформатора, выпрямителя и фильтра. Сочетание трансформатора с низкоомной вторичной обмоткой, рассчитанного без запаса по индукции насыщения сердечника, конструктивно выполненного без технологического зазора, мостового выпрямителя на полупроводниковых диодах и фильтра с первым конденсатором необоснованно большой емкости – гарантирует резкое ограничение импульсов зарядного тока, возникающего из-за насыщения сердечника трансформатора. Импульс “ограниченного” зарядного тока имеет широкий спектр, большую длительность и, что самое неприятное – возникает и “живет” в силовом трансформаторе . Поэтому вполне очевидно ,что шунтирование выпрямительных диодов небольшими высокочастотными конденсаторами, применение диодов с меньшим падением напряжения и малым временем восстановления – лишь несколько “сглаживает” форму импульса тока, но не избавляет от него, потому что силовой трансформатор все так же продолжит “наводить” помехи на соединительные провода и схемы конструкции. Если от такого выпрямителя питается двухтактный усилитель мощности, то в нагрузке синфазная помеха по “общему” и питанию” (или по “плюсу” и “минусу” в случае питания двойной полярности) может почти полностью скомпенсироваться. В усилителях класса АВ – помеха возникает только при скачках потребляемого тока на пиках сигнала – и в значительной степени маскируется сигналом. А вот в однотактных усилителях мощности, работающих в классе А (например, Follower или Zen) – помеха вполне очевидно слышна и даже видна – при помощи осциллографа. Продуманная “архитектура” фильтра выпрямителя и качественный, хорошо экранированный трансформатор питания для таких конструкций – предмет первой необходимости ?
Май 2015 г. г.Владивосток

3 thoughts on “ Заметки по поводу “моста” ”

Очень интересная статья. С уважением Вячеслав.

http://easytubeamp.com/zamechaniya-po-povodu-mosta/

Шунтирование диодов в выпрямителе

Радиоприем нередко сопровождается сильным фоном переменного тока, прослушиваемым при настройке на несущую радиостанции. Даже если несущая отсутствует, например, при приеме SSB сигналов, речь становится искаженной и неразборчивой. Телеграфные сигналы приобретают хриплый тон. Особенно сильно эффект проявляется в транзисторных приемниках со штыревыми антеннами, зачастую делая невозможным их питание от сети переменного тока. Эффект в равной мере проявляется и при передаче, искажая сигнал станции и расширяя его спектр. О причинах этого явления и средствах борьбы с ним и рассказывается в предлагаемом материале.
В статье рассмотрены такие преобразования радиосигналов, при которых в результате прохождения токов радиочастоты через диоды работающего источника вторичного электропитания, содержащего выпрямитель, происходит нежелательная модуляция радиосигналов с частотами гармоник питающей сети.
Наиболее ярко этот эффект проявляется, например, при питании портативного вещательного радиоприемника AM сигналов со штыревой антенной от сети переменного тока через выпрямитель. Фон переменного тока прослушивается только тогда, когда приемник настроен на частоту работающей станции, и совсем не слышен, если сигнал станции отсутствует. Интенсивность фона повышается с ростом уровня сигнала, поэтому фон наиболее заметен при приеме местных радиостанций [1]. Наряду с фоном переменного тока, четко выделяющимся во время пауз передачи, прослушиваются существенные искажения речи и музыки.
В отличие от аддитивного фона, причиной которого может быть, например, неудовлетворительная фильтрация напряжения питания и который прослушивается на выходе приемника независимо от того, настроен он на какую-либо станцию или нет, указанный фон справедливо называют мультипликативным фоном (МФ) [2], т. е. возникшим в результате функционального перемножения колебаний сигнала и помехи.

Рис. 1
Процесс может происходить следующим образом: если в качестве антенны используется отрезок провода, то в антенную систему, участвующую в процессе приема, в качестве противовеса неизбежно входят провода питающей сети, в которых, как и в антенном проводе, под действием электромагнитного поля радиостанции тоже наводится ЭДС радиочастоты (рис. 1). Источник вторичного питания (ИВП) в этом случае действует одновременно и как модулятор радиосигнала фоном переменного тока, поскольку в цепь антенной системы приемника (Rx) оказываются включенными диоды выпрямителя, как показано на рис. 2.

Рис.2
Каждый диод работающего выпрямителя является для сравнительно малых напряжений радиочастоты параметрическим элементом (т. е. линейным элементом, параметры которого существенно изменяются во времени с частотой 50 Гц под действием сравнительно большого напряжения от вторичной обмотки трансформатора). Радиочастотный ток i в цепи антенной системы, попадающий на вход приемника, определяется как произведение напряжения полезного сигнала на диодах, пропорционального наведенной в антенной системе ЭДС, на переменную проводимость диодов. Полезный сигнал оказывается таким образом умноженным на функцию изменения проводимости диодов, получая при этом паразитную модуляцию фоном переменного тока. Ввиду того, что под влиянием изменений обратного напряжения при закрытых диодах изменяется их емкость, сигнал получает в общем случае не только амплитудную, но и фазовую (частотную) модуляцию [3].
Аналогичные явления могут происходить не только при приеме, но и при передаче. При этом источником радиочастотных токов в проводах сети является передатчик, питаемый от сети через выпрямитель. Антенная система с участием проводов сети излучает сигнал с паразитной модуляцией фоном, и этот мультипликативный фон будет помехой всем, кто принимает сигнал данного передатчика. Если радиостанция в режимах приема и передачи использует одну и ту же антенну и питается от одного выпрямителя, то обнаруженный при приеме мультипликативный фон свидетельствует о том, что и при передаче также может быть паразитная модуляция сигнала фоном.
Область проявления рассматриваемого эффекта отнюдь не ограничивается портативной радиоаппаратурой. В стационарных установках с простейшими антеннами токи, казалось бы, должны уходить по проводу заземления, минуя источник питания. Однако от заземления в этом смысле мало пользы, ибо эффективное заземление по высокой частоте, как известно в [4, 5], практически неосуществимо. Синфазные токи радиочастоты в проводах сети могут наводиться в режиме передачи и при наличии полноценной (даже симметричной) антенны с фидером. Это происходит при недостаточном удалении самой антенны от проводов сети или при наличии антенного эффекта фидера [6].
Выше указывалось, что паразитной модуляции подвергается как амплитуда, так и фаза (частота) сигнала. На практике исходная паразитная частотная модуляция фоном незначительна, однако если модуляция принимаемого (или передаваемого) сигнала фоном даже чисто амплитудная, то неизбежные перекосы частотной характеристики тракта передачи-приема приводят к появлению частотной модуляции
фоном и помеха будет обнаруживаться приемниками не только AM, но и ЧМ сигналов.
Рассматриваемые мультипликативные помехи приводят к серьезному ухудшению качества сигналов радиовещания и связи. Прием телеграфных и однополосных сигналов, как и обычных радиовещательных, сопровождается характерной хрипотой. В [2] отмечается, что в телевизоре мультипликативный фон \»может быть одной из причин появления на экране перемещающихся горизонтальных полос, в пределах которых изображение имеет ослабленные или усиленные контрастность и яркость\». Это случается при пользовании простыми комнатными или встроенными антеннами. Нередко причиной помех бывает модуляция радиосигнала в подключенном к той же сети выпрямителе, функционально (и даже гальванически!) не связанном с приемником или передатчиком этого сигнала.
Обстоятельный анализ мультипликативных помех дан в книге [З]. Если влияние аддитивной помехи, которая суммируется с сигналом, можно ослабить с помощью фильтрации, компенсации и даже просто увеличением уровня полезного сигнала, то наиболее реальный путь борьбы с мультипликативной помехой — устранение ее причин и, в частности, в источнике питания.
В литературе можно найти ряд способов ослабления мультипликативного фона [1, 2, 7-10], однако все обнаруженные литературные источники затрагивают проблему только с одной стороны — при радиоприеме.
Наша цель — не только показать, что область возможных негативных проявлений рассмотренных преобразований несколько шире, но также сделать сравнительную оценку возможных способов подавления МФ и привести обоснованные аргументы в пользу одного из направлений в борьбе с этим явлением.
Мультипликативный фон, как при передаче, так и при приеме, возникает при совпадении двух условий: наличия существенной связи между приемником (передатчиком) и проводами сети, т. е. заметного участия проводов сети в работе антенной системы и наличия модулирующих параметрических элементов (диодов выпрямителя) в цепи антенной системы, включающей передатчик (приемник).
Следовательно, борьба с мультипликативным фоном может проводиться, по крайней мере, одним из двух способов соответственно: ослаблением связи между передатчиком (приемником) и проводами сети или ослаблением модулирующего действия диодов. Любой из этих методов для ослабления МФ может оказаться достаточным.
Наиболее популярный способ подавления мультипликативного фона относится ко второму методу. Он состоит в шунтировании диодов выпрямителя конденсаторами [2, 8-10]. Путь токов радиочастоты становится более коротким через имеющие малое сопротивление линейные конденсаторы, а не через диоды, и при достаточно большой емкости шунтирующих конденсаторов удается получить значительное ослабление помехи.
Примерно с конца 70-х годов шунтирование диодов выпрямителей конденсаторами используется многими отечественными и зарубежными производителями источников вторичного электропитания радиоаппаратуры. Конденсаторы устанавливают как в мостовых, так и в двуполупериодных выпрямителях с отводом от середины вторичной обмотки, и даже в однополупериодных выпрямителях. Нам не удалось проследить первопричину и выяснить цель установки конденсаторов, однако в ряде обнаруженных (немногочисленных) комментариев по этому поводу указывалось, что это сделано для \»сглаживания высокочастотных помех, проникающих со стороны сети\». Во всяком случае эффект модуляции фоном переменного тока заметно снижается. Конденсаторы также способствуют уменьшению импульсных помех от переходных процессов в самих диодах при работе выпрямителя [5].
Другой способ исключить диоды выпрямителя из цепи для синфазных токов радиочастоты более доступен: можно просто соединить по высокой частоте провода сети с общим проводом (корпусом) радиоаппарата [1, 7]. Это делается, например, во всех чувствительных к помехам измерительных приборах и генераторах сигналов. Оба провода сети соединяют с корпусом прибора конденсаторами по 10. 100 нф. В этом случае незаземленный корпус прибора может оказаться под опасным напряжением, поэтому защитное заземление (или зануление) корпуса обязательно.
Заметим, что в результате шунтирования конденсаторами диодов или выпрямителя в целом помехи разного рода, проникающие как со стороны сети (в приемник), так и в сторону сети (от передатчика), не уменьшаются, а наоборот, увеличиваются, так как уменьшается сопротивление на их пути.
Таким образом, ослабляя по второму методу мультипликативный фон, возникающий в своем выпрямителе, мы не устраняем, а наоборот, увеличиваем токи радиочастоты в проводах сети. Остается мощный потенциальный источник помех — электросеть как активная часть антенной системы. Таким способом, как показывает опыт, практически невозможно эффективно подавить МФ в условиях реальных сетей при наличии нелинейных или параметрических элементов в подключенных к этой же сети соседних устройствах, в частности устройствах вторичного электропитания.
Значительно лучше в этом отношении не облегчать путь токам радиочастоты через выпрямитель, а наоборот, исключить причину этих токов или закрыть им этот путь, следуя первому из указанных выше методов.
Один из способов — установка запорных дросселей [2]. Они включаются в цепи питания (первичную и/или вторичную) поблизости от объекта (приемника или передатчика), при этом не требуется вмешательства в цепи выпрямителя. Дроссели служат для исключения или для ограничения участия проводов сети в составе антенной системы радиоустройства. Они защищают приемник не только от помех, возникших в своем выпрямителе, но и от помех, возникших во всех других выпрямителях и прочих источниках, связанных сданной сетью. Ведь паразитная модуляция может произойти и на диодах \»чужого\» выпрямителя.
Дроссели в проводах сети устанавливают практически во всех современных телевизионных приемниках с импульсными вторичными источниками питания, хотя основное их назначение — закрыть путь для гармоник частоты преобразователя и генератора строчной развертки в провода сети.
Другой способ [2] состоит в экранировке вторичной обмотки силового трансформатора от первичной. Идеальная экранировка предполагает полное устранение емкостной связи между обмотками трансформатора. Однако это невозможно ввиду практической невыполнимости эффективного заземления экрана по радиочастоте. А для бестрансформаторных источников питания этот способ, конечно, вообще не подходит.
Еще один путь борьбы с мультипликативным фоном — ослабление электромагнитной связи между антенной и проводами сети. Этого можно добиться удалением, насколько возможно, проводов антенны от проводов сети, избегая параллельного их расположения, а также предупреждением или ослаблением антенного эффекта фидера [6], что достигается, например, с помощью симметрирующих устройств и запорных дросселей (линейных изоляторов) в фидере.
Для наиболее эффективного подавления и предупреждения мультипликативных помех можно и нужно использовать все доступные способы комбинированно. Однако в большинстве описаний любительских блоков вторичного питания никаких средств борьбы с МФ, к сожалению, не обнаружено.
Подчеркнем, что способы первого метода, не являясь необходимыми для узкой цели подавления мультипликативных помех от источников питания, могут оказаться весьма желательными и даже необходимыми для борьбы и с прочими помехами других видов (аддитивных), в то время как взятые отдельно способы второго метода могут усугубить помеховую ситуацию в отношении этих прочих помех. Поэтому предпочтительное применение первого метода отдельно или в сочетании со вторым нам представляется более чем целесообразным.
Сказанное иллюстрируется осциллограммами, полученными с помощью компьютерного моделирования (Electronics Workbench v.5.12). Схема моделирования представлена на рис. 3.

Рис.3 Мостовой выпрямитель, питаемый от источника переменного напряжения G1, нагружен цепью R2C7. Диоды моста VD1 — VD4 по параметрам близки к отечественным диодам КД204Б. Ток радиочастоты 150 кГц через выпрямитель создается действием ЭДС генератора G2. Для его индикации служит преобразователь тока в напряжение (генератор напряжения, управляемый током) U1. В качестве элементов подавления МФ служат конденсаторы СЗ — С6 и/или дроссель 11. Элементы С1, С2, R1 представляют модель (эквивалент) некоторой антенной системы с участием сети.

http://rfanat.ru/s5/mfon1-202.html

Шунтирование диодов в выпрямителе

Основная тема: защита дорогостоящих, или опасных, или нестандартно установленных элементов РЭА — от саморазрушения. В реальном мире нет двух идеально одинаковых элементов, даже если они из одной партии, — порой нужно защищать и их при совместном использовании. Субъективно сложилось впечатление, что вероятность срабатывания защиты в момент включения/выключения РЭА выше, чем во время ее непосредственной работы. К примеру, видел много взрывающихся конденсаторов именно в момент подачи напряжения; и только 1 раз — взрыв внутри системного блока спустя часы работы.
Ввиду того, что программы моделирования электрических схем не являются идеально правильными, — с их помощью невозможно смоделировать описанные здесь ситуации. Мало того, нужно фиксировать величины, длительность существования которых измеряется микросекундами, что невозможно. Даже такая среда как Multisim навредила уже несколько раз, например:
— в самодельном диодом мосте еще со времен СССР в одном плече могло находиться хоть 27 последовательно включенных диодов (с целью распределения напряжения на них). Однако программа искажает форму сигнала после второго же диода, добавляя нижний полупериод, который должен быть отрезан (при этом диодный мост становится неработоспособным). И искажает падение напряжения на диодах. Вот личное видео с другой проблемой, где замыкание на диоды порождает пульсации много выше пика амплитуды источника. Вольтметры в режиме DC вообще отрицательное показывают;
— моделирование не может имитировать взрывы конденсаторов, расплавление от температуры проводников, падение напряжения на проводниках;
— предохранитель вообще не настраиваемый и разрывается через лишь несколько секунд (при номинале 0.5А и токе 10А это смотрится особенно эпично);
— в разных программах моделирования номиналы напряжения и токов разные при одних и тех же компонентах и их номиналах!
Однако даже с такими глюками данные программы нужны. Они способны показать грубые ошибки именно в стабилизированном после включения режиме работы: перегорание тех же предохранителей, номиналы токов и напряжений, закономерности и т.д. Теперь о частных случаях защиты компонентов шунтами, некоторые лично разработаны.
0. Любой шунт является паразитным (исключение, разве что, предохранитель). Например, установленный последовательно нагрузке резистор 0.1Ом отбирает от нагрузки то напряжение, которое на нем и измеряется для расчета силы тока цепи. Поэтому работает правило: при последовательном подключении номинал сопротивления шунта, как правило, мал; при параллельном — как правило, велик.
1. Шунтирование диода резистором — параллельно. Смысл: предотвращение высокого обратного тока в случае включения нескольких диодов последовательно.
Например, если требуется диодный мост на 2200В, а под рукой только диоды 2Д202В на 100В (на работе их около 1000шт — выбросить хотели, ага, щазз). Итак, в одно плечо диодного моста ставится N диодов. Ввиду физического износа и неточностей изготовления есть разброс по параметрам. Один из диодов имеет более высокое внутреннее сопротивление относительно других — его обратный ток и обратное напряжение будут самыми высокими, а также падение прямого напряжения.
Если обратный ток превышает предельный — диод пробивает, даже если предел прямого напряжения не превышен. Без резистора обратные токи перераспределятся на оставшихся диодах — умрут все. С резистором обратный ток перераспределяется между резистором и диодом. Как следствие, падает обратное напряжение на диоде.
Формула расчета сопротивления резистора: чтобы протекал 5-кратный максимальный обратный ток диода. Например, для 2Д202В при 1мА — 5мА, при напряжении 10В DC составит 0.5кОм, при напряжении 220В AC — 15.55кОм за счет пика амплитуды 311В. Рекомендуют 10-кратный максимальный обратный ток, никаких обоснований для данных коэффициентов нет. Здесь чем больше сопротивление, тем лучше для схемы.
Моделирование с переменным напряжением показало: если забыть к одному диоду припаять резистор — на этом диоде упадет почти все прямое напряжение, а на шунтированных упадет в районе 0.6В.
2. Шунтирование конденсатора резистором — последовательно. Смысл:
— уменьшение последствий взрыва конденсатора в случае превышения предельного напряжения;
— берет совсем немного напряжения на себя при заряженном конденсаторе, что позволит отдалиться от предельного напряжения.
Когда конденсатору приспичит взорваться, будет резкий бросок по амперам: сопротивление конденсатора падает, ток выше, рассеиваемая энергия больше — сопротивление падает еще ниже. Электролит мгновенно вскипает и вызывает химический взрыв.
Взрывал на практике конденсатор 1мкФ/6.3В — эта малюсенькая шмакодявка сработала как средняя петарда и заставила убирать полкомнаты. А теперь представим, что взрывается конденсатор 1500мкФ/500В, который устанавливается в адаптеры питания до 500В, — это уже аналог взрывчатки; а если советский — то направленного действия за счет алюминиевого корпуса. Мало того, он стоит 2500руб (а 2500мкФ — вообще 7000руб). Речь уже идет не столько о защите конденсатора, сколько о сохранении здоровья, денег, спокойствия соседей всего дома и ментов всего района.
Ну и не дадим ему взорваться, установив токоограничивающий резистор. Конденсатор будет заряжаться длительное время, возможно даже секунды (сколько требуется, чтоб конденсатор выполнял свою прямую функцию в схеме), — это нужно учитывать; данный метод не является универсальным.
Так как невозможно узнать номинал тока, который будет у конденсатора в момент взрыва, расчет резистора приходится делать на этапе моделирования. Например, если в диодный мост установлен сглаживающий конденсатор, его номинал уже рассчитан по формуле — значит, максимальный ток источника постоянного тока уже известен. Подключить максимально допустимую по амперам нагрузку, последить за пульсациями напряжения на нагрузке, установить приемлемые пульсации и списать номинал резистора.
Итог: вместо оглушительного взрыва конденсатор издаст негромкий \»пук\», от превышения напряжения не спасает.
3. Шунтирование конденсатора предохранителем (быстрого срабатывания) — последовательно (не работает!). Смысл: предотвращение взрыва конденсатора в случае превышения предельного напряжения.
Эксперименты:
— при попытке зарядить конденсатор 1000мкФ/35В от источника 5В/2.5А, с использованием предохранителя 0.5А, — предохранитель не сгорел;
— от источника 22В/10А — та же ситуация;
— от источника 5В/2.5А на связку последовательных конденсаторов конденсаторов 470мкФ/10В, 100мкФ/10В, 47мкФ/16В, 22мкФ/25В (далее — связка, в бутылке) — не сгорел;
— от источника 22В/10А на связку — не сгорел;
— при попытке взорвать связку импульсным положительным напряжением 40В/100Гц, перепутав полярности, — предохранитель не сгорел, но конденсатор с меньшей емкостью взорвался. Напряжение на связке увеличилось до 60В (при поданных 40!), разъединения цепи не произошло, внутри бутылки — брызги именно жидкого электролита! Бутылка — мутная вся от паров электролита, при открытии — воняет. Конденсаторная бумага стала кашей, а не бумагой;
— увеличил напряжение до 110В, поставил предохранитель 0.25А, разрядил связку. При включении предохранитель сгорел сразу. Поставил 0.5А — тоже сгорел сразу. Зарядил связку без предохранителя меньшим напряжением, поставил предохранитель, увеличил напряжение до номинального — предохранитель сгорел, конденсатор не взорвался. Убрал предохранитель — взорвался. Цепь так же не разомкнулась.
Итоги:
— предохранитель спасает конденсатор от взрыва;
— но ток взрыва примерно равен току заряда конденсатора с нуля — у предохранителя сразу наступит ложное срабатывание;
— макетированием возможно получать номиналы предохранителей, при которых они не будут перегорать при заряде конденсатора с нуля — чтобы использовать их для пункта 3.
3. Шунтирование конденсатора варистором — параллельно, предохранителем (быстрого срабатывания) — последовательно. Смысл: предотвращение взрыва и разрушения конденсатора в случае приближения к предельному напряжению.
Он просто не захочет взрываться. Напряжение срабатывания варистора должно быть чуть ниже предельного напряжения конденсатора. Варистор резко уменьшает свое сопротивление при достижении своего предельного напряжения и устраивает практически КЗ. За то время, пока он будет сам себя выжигать и не отсоединился от схемы, сработает последовательно установленный предохранитель такого номинала, при котором конденсатор успешно заряжается.
Итог: взрыва нет, конденсатор целый, уничтожены предохранитель и (с некоторой вероятностью) варистор — копеечная цена за безопасность.
4. Шунтирование конденсатора резистором — параллельно. Смысл: разряд конденсатора, чтобы после отключения устройства не получить удар током при работе с платой устройства.
Особенно это касается конденсаторов с напряжением выше 42В (выше безопасного напряжения по ППБ-С для сухой кожи). Расчет номинала резистора, даже при малом напряжении, идет на сотни килоом. Вспоминая прошлый опыт: при 3.91В и сопротивлении 250кОм конденсатор разряжался примерно с примерной скоростью 0.01В/сек. Лучше сами зарядите конденсатор и приложите резистор в несколько сотен килоом. Номинал велик, поэтому на работоспособность схемы вообще никак не влияет, особенно если мегаомы ставить.
5. Шунтирование транзистора диодом — параллельно, диод направлен против тока. Смысл:
— принятие на себя обратного напряжения, возникающего при закрытии транзистора (нет возможности воспроизведения, все об этом говорят — но никто не может доказать);
— уменьшение индуктивных выбросов (напряжения самоиндукции) в случае, если нагрузка индуктивная, например, двигатель (доказано опытами в интернете).
6. Шунтирование реле диодом — параллельно, диод направлен против тока. Смысл:
— гашение самоиндукции при отключении реле (не текут обратные токи через катушку реле);
— предотвращения перенапряжения на ключевом элементе, управляющем обмоткой реле.
В итоге увеличивается время отпускания реле, что решается установкой последовательно диоду резистора. Но, как правило, эта задержка настолько мала, что обращать внимание на нее не стоит. Методика расчета резистора неизвестна.
7. Шунтирование транзистора резистором — последовательно, ко входу. Смысл: выравнивание напряжений на параллельно соединенных транзисторах на момент подачи питания. Крайне сложная в понимании вещь, удалось понять только следующее:
— так как транзисторы не идеально одинаковые, в момент подачи управляющего напряжения они начинают открываться с разной скоростью (разным периодом полного открытия);
— один транзистор открывается полностью, в это время остальные еще полузакрыты (сопротивление — десятки килоом, считай — закрыт). Вместо 10А на 4 транзистора становится 40А на 1. Внутри кристалла транзистора наступает критическая температура, и за те микросекунды открытия других транзисторов он может выйти из строя. Утверждается, что структура биполярных транзисторов разрушается при 200 градусах, полевых — при 150; данные непроверенные.
Как именно происходит выравнивание напряжений при открытии транзисторов с резисторами — не может объяснить абсолютно никто. Все строят умные лица, говорят \»делай так-то\», а по сути — данный способ остается котом в мешке, который моделированием сложно или невозможно проверить. Остается макетирование.
Также неясен вопрос, нужны ли такие резисторы для полевых транзисторов, ввиду их крайне быстрого открытия (наносекунды против микросекунд и десятых миллисекунд).
(добавлено 24.07.2017) 8. Шунтирование транзистора варистором — параллельно. Смысл: двунаправленная защита транзистора от перенапряжения непосредственно во время его работы. Варистор необязательно сгорает сразу: он может без ущерба для себя поглощать кратковременные всплески напряжения со скоростью реагирования 25нс.
(добавлено 27.07.2017) Защита электролитического конденсатора диодом последовательно — для защиты от переполюсовки.
(добавлено 03.08.2017) Защита от выброса 10-кратного напряжения питания дросселем в прибор (после отключения питания): установка диода параллельно дросселю обратно питанию. В момент выключения питания ЭДС самоиндукции, направленная в обратную сторону, полностью гасится этим диодом.
(добавлено 02.10.2017) Был собран диодный мост из 32 диодов 2Д202В (70В/5А), по 8 диодов в колене — для использования в сети 220В DC. Что с шунтированием защитными резисторами 15.5кОм параллельно, что без них — разницы в работоспособности под нагрузкой замечено не было. Чрезмерного различия в нагреве диодов и их пробития также замечено не было. Возможно, это совпадение — и диоды 1986 года выпуска оказались из одной партии — но маловероятно. Возможно, работа резисторов происходит именно на пике работы диодного моста: при токе 5А; но таковой нагрузки для макетирования у меня нет.
(добавлено 26.12.2018) Для защиты транзисторов от электромагнитных выбросов со стороны обмотки реле (при выключении) — применяются именно импульсный диод, установленный параллельно обмотке реле. Важный параметр диода — максимальное время восстановления обратного сопротивления (способность диода принять следующий импульс).

http://www.bad-good.ru/2017/june/shunt-protection.html

1 звезда2 звезды3 звезды4 звезды5 звезд (Поки оцінок немає)
Загрузка...
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector