Строение миокарда сердца — Физиология сердца

Строение миокарда сердца

Сердце как орган состоит из трех оболочек: эндокарда, самой глубокой оболочки представленной соединительно-тканной оболочкой, покрытой эндотелием, миокарда — мышечной оболочки сердца и эпикарда — наружной серозной- оболочки сердца.
Миокард построен из сердечной поперечно — полосатой мышечной ткани и имеет ряд особенностей связанных с самой функцией сердца, как в целом, так и его отделов:

  • — В различных отделах толщина сердечной мышцы неодинакова, например в левом желудочке стенка толще чем в правом.
  • — Мышцы предсердия обособлены от мышц желудочков.
  • — В желудочках и предсердиях существуют общие мышечные пласты.
  • — В области венозных устьев преддверий располагаются сфинктеры.
  • — Наличие в миокарде двух морфофункциональных типов мышечных волокон.

Сердечная мышца при микроскопии выглядит подобно скелетной поперечно- полосатой мускулатуре. Наблюдается четко выраженная поперечная исчерченость и саркомерное строение.
Различают два типа сердечных волокон:

  • 1) типичные волокна — рабочего миокарда,
  • 2) нетипичные волокна проводящей системы.

Саркомеры состоят из чередующихся темных (миозиновых) — А, и светлых (актиновых) — I полос. В центра полосы А расположена зона Н имеющая центральную Т-линию. Саркомеры соединяются между собой с помощью вставочных дисков — нексусов, которые и являются истинными границами клеток.
Миозин содержащийся в полосе А, способен расщеплять АТФ до АДФ, то есть представляет собой аденозинтрифосфатазу, а так же способен образовывать с миозином обратимый комплекс актомиозин (в присутствии Са++ и образованием АДФ), чем и обусловлена сократимость сердечной мышцы.
Благодаря атипическим нервным волокнам реализуется автоматия сердца.
Автоматия сердца — это способность сердца ритмически сокращаться под влиянием импульсов, зарождающихся в нем самом.
Морфологическим субстратом автоматии служат атипические сердечные волокна. — пейсмекеры, способные к периодической самогенерации мембранного потенциала.
Атипические миоциты более крупные, нежели рабочие, в них содержится больше саркоплазмы с высоким содержанием гликогена, но мало миофибрилл и митохондрий. В атипических клетках преобладают ферменты, способствующие анаэробному гликолизу.
Сами атипические клетки располагаются в строго определенных областях и образуют синатриальный (Кейт-Флерка) и атриовентрикулярный (Ашоффа-Тавара) узлы и пучек Гисса делящийся на ножки, которые разветвляются как волокна Пуркинье.

http://vuzlit.ru/826968/stroenie_miokarda_serdtsa

СТРОЕНИЕ МИОКАРДА

Мышечная система сердца, или миокард, является сочетанием нескольких слоев мышц, направленных в разные стороны, они начинаются от фиброзного «скелета» сердца и расходятся поперечно, под наклоном вниз к верхушке органа и абсолютно вертикально. Такое расположение мышц наделяет миокард высокой прочностью и способностью эффективно распределять нагрузку в отделах сердца. Важной особенностью является также полная автономность (то есть изолированность, независимость) мышечных структур предсердий и желудочков, что дает ключ к пониманию работы сердца в целом. Пожалуй, чтобы продолжить разговор о строении миокарда, возможностей невооруженного глаза будет недостаточно. И будет необходимо разобрать препарат миокарда (рис. 1).

Рисунок 1. Вид миокарда под микроскопом
Особенностью мышцы сердца является её способность совмещать в себе характеристики двух видов мышечной ткани: скелетной и гладкой. От скелетной мышечной ткани она взяла поперечно-полосатую исчерченность, а вместе с подобной структурой и сам механизм действия, от гладкой мышечной ткани была взята клеточная структура и, как следствие, избежание контроля человеческим сознанием. Но, если непроизвольность работы миокарда не представляет собой ничего удивительного, то клетка сердечной мышцы — вещица весьма интересная. Называется она кардиомиоцитом (от греч, cardia — сердце, myos — мышца, cytus — клетка). За актиново-миозиновым «забором» расположено вытянутое ядро. Как и в гладком миоците, оно смогло совладать с условиями постоянного сокращения и способно уменьшаться вместе с размером клетки. Но оно имеет еще одно удивительное свойство. Подавляющее количество ядер кардиомиоцитов полиплоидны, то есть включают в себя большее число хромосом, чем ядра клеток других тканей. Подобное ухищрение позволяет кардиомиоцитам справляться с огромными нагрузками.
Продолжая разговор о миокарде, мы подошли еще к одной особенности его строения. На препарате мышечной ткани сердца можно заметить, что кардиомиоциты имеют отростки. Ими они цепко держатся за своих соседей, а те — за своих. Таким образом, все клетки сердечной мышцы тесно взаимосвязаны. Они образуют как бы единую сеть, волокна этой структуры тесно переплетаются, переходят одно в другое. Но и это не все. Места в которых отростки кардиомиоцитов контактируют друг с другом носят название вставочных дисков. Диски имею большое количество щелей, через эти отверстия возбуждение от одной клетки передается в другую. А это и является главным отличительным признаком миокарда: благодаря вставочным дискам клетки сердечной мышцы могут очень быстро передать полученный ими сигнал, направляя его дальше по ветвистой сети волокон, в результате весь миокард может охватываться возбуждением и ответ на возбуждение — сокращение, возможно получить приблизительно за 0,4 с.
Возвращаясь к макростроению миокарда, отметим еще два нюанса. Во-первых, мышечная стенка желудочков гораздо толще, чем стенки предсердий. В предсердиях выделяют слой более поверхностных мышечных пучков, лежащих горизонтально и охватывающих два предсердия сразу, выделяют и слой глубокорасположенных пучков продольных волокон, этот слой имеет разделение для каждого предсердия в отдельности. В желудочках выделяют не два слоя, а целых три: мышечные пучки поверхностного слоя, идут косо к верхушке и берут начало от фиброзных колец, на верхушке сердца, они сворачиваются, образуя настоящий круговорот (рис. 2), погружаются в глубь стенки, а затем поднимаются от верхушки в обратном направлении к атриовентрикулярным кольцам в виде уже глубокого слоя, стоит обратить внимание, что на этот раз ход волокон почти перпендикулярен вышеописанному. Оба слоя едины для двух желудочков, в отличие от третьего слоя. Третий слой — средний мышечный, располагается между двумя предыдущими, его волокна горизонтальны, и как мы уже говорили выше, горизонтальный слой волокон существует отдельно для правого и левого желудочков. Перегородка сердца образуется именно такими раздельными для одноименных полостей слоями. Но лишь такая «изощренность» устройства миокарда позволяет сердцу быть настолько неутомляемым. Ведь оно работает всю человеческую жизнь (а рекордсмены книги Гиннеса переживали и 140-летний рубеж) и при создании определенных условий смогло бы работать и после биологической смерти своего обладателя.

Рисунок 2. Миокард желудочков (вид с верхушки)
И во-вторых, говоря о миокарде, нельзя не упомянуть о том, что от глубокого мышечного слоя в полости желудочков отходят различные неровности и выступы. Одни из них похожи на толстых переплетающихся дождевых червяков — анатомы их называют мясистыми перекладинами, другие напоминают столбики, постепенно заостряющиеся к своей верхушке, и называются сосочковыми мышцами, и все имеют огромное значение для нормальной работы сердца.

http://tardokanatomy.ru/content/stroenie-miokarda

Строение миокарда;

Строение створок клапанов
Строение эндокарда
Развитие сердца
Сердце
Это центральный орган крово- и лимфообращения. Благодаря способности к сокращениям приводит в движение кровь. Стенка сердца состоит из трех оболочек: эндокарда, миокарда и эпикарда.
Происходит следующим образом: в краниальном полюсе эмбриона, справа и слева из мезенхимы образуются эндокардиальные трубки. В это же время в висцеральных листках спланхнотома появляются утолщения, которые называются миоэпикардиальными пластинками. В них впячиваются эндокардиальные трубки. Два образовавшихся зачатка сердца постепенно сближаются и сливаются в единую трубку, состоящую из трех оболочек, так появляется однокамерная модель сердца. Затем происходит рост трубки в длину, она приобретает S – образную форму и подразделяется на передний отдел – желудочковый и задний – предсердный. Позже в сердце появляются перегородки и клапаны.
Эндокард – это внутренняя оболочка сердца, которая выстилает предсердия и желудочки, состоит из четырех слоёв и по своему строению напоминает стенку артерии.
I слой – эндотелий, который располагается на базальной мембране.
II слой – подэндотелиальный, представлен рыхлой соединительной тканью. Эти два слоя аналогичны внутренней оболочке артерий.
III слой – мышечно-эластический, состоящий из гладкой мышечной ткани, между клетками которой в виде густой сети располагаются эластические волокна. Этот слой является «эквивалентом» средней оболочки артерий.
IV слой – наружный соединительнотканный, состоящий из рыхлой соединительной ткани. Он аналогичен наружной (адвентициальной) оболочке артерий.
Сосудов в эндокарде нет, поэтому его питание происходит путём диффузии веществ из крови, находящейся в полостях сердца.
За счёт эндокарда сформированы атриовентрикулярные клапаны и клапаны аорты и лёгочной артерии.
С обеих сторон створка покрыта эндотелием, под которым находится субэндотелий. В основе створки находится пластинка из плотной волокнистой соединительной ткани, прикреплённая к фиброзному кольцу, окружающему клапан.
Миокард является средней оболочкой сердца. Основная масса миокарда представлена поперечно-полосатой мышечной тканью, состоящей из типичных кардиомиоцитов, которые имеют цилиндрическую форму и, не сливаясь, объединяются в функциональные волокна. Места соединения типичных кардиомиоцитов называются вставочными дисками, в области вставочных дисков имеются контакты 3 видов: интердигитации, десмосомы и нексусы (через них обмен веществ между кардиомиоцитами и обеспечивается электрическая связь). Функциональные волокна покрыты сарколеммой (состоящей из базальной мембраны и плазмолеммы). Связаны между собой анастомозами. В типичных кардиомиоцитах имеется 1-2 ядра овальной формы, располагающиеся в центре. В саркоплазме данных клеток хорошо развиты митохондрии, эндоплазматическая сеть, имеются включения гликогена и липидов, также развиты миофибриллы, необходимые для сокращения кардиомиоцитов. Для передачи возбуждения к миофибриллам имеются Т-трубочки – глубокие каналообразные впячивания плазмолеммы и L-канальцы, образованные компонентами гладкой ЭПС, которые петлеобразно располагаются вдоль каждой миофибриллы.
Помимо типичных кардиомиоцитов, в миокарде имеются секреторные (эндокринные) кардиомиоциты. Они располагаются в миокарде предсердий и вырабатывают предсердный натрийуретический фактор, который регулирует сократимость сердечной мышцы, объем циркулирующей жидкости, артериальное давление и диурез.
Так же в миокарде располагаются атипичные (проводящие) кардиомиоциты, формирующие проводящую систему сердца, которая обеспечивает ритмичную смену систолических сокращений и диастол камер сердца и работу его клапанного аппарата.
Проводящая система сердца представлена:
Синусным (синусно-предсердным, синоатриальным) узлом, который располагается в верхней стенке правого предсердия. От него идет пучок Кис – Фляка, который связывает предсердия друг с другом и со вторым узлом проводящей системы, который называется предсердно-желудочковым (атриовентрикулярным, Ашоффа – Тавары). Данный узел располагается в нижней стенке правого предсердия около межпредсердной перегородки. От него отходит пучок Гиса, располагающийся в межжелудочковой перегородке. Пучок Гиса делится на левую и правую ножки, которые заканчиваются волокнами Пуркинье.
Атипичные кардиомиоциты обладают повышенной возбудимостью, многие из них способны самостоятельно периодически возбуждаться, но практически не способны к сокращениям в отличие от типичных кардиомиоцитов.
Различают 3 вида атипичных кардиомиоцитов:
1. P-клетки (пейсмекеры) – небольшие, полигональной формы клетки, содержат мало миофибрилл, которые имеют разное направление, в цитоплазме содержат митохондрии, включения гликогена и слаборазвитую гладкую ЭПС. Т-трубочки и вставочные диски в данных клетках отсутствуют. Р-клетки составляют основу синусного узла, который генерирует импульсы с частотой 60 – 70 в минуту, поэтому данный узел еще называют водителем ритма первого порядка. По периферии синусного узла располагаются переходные кардиомиоциты — это второй вид атипичных кардиомиоцитов.
2. Переходные кардиомиоциты – они не только располагаются по периферии синусного узла, но и составляют основу атриовентрикулярного узла (водителя ритма второго порядка). По своей структуре они занимают промежуточное положение между типичными и атипичными кардиомиоцитами (поэтому они и называются переходными). Клетки имеют цилиндрическую форму, довольно многочисленные упорядоченно расположенные миофибриллы, короткие Т-трубочки и слаборазвитые вставочные диски. Данные клетки способны генерировать импульсы с частотой 30 – 40 в минуту, передавать возбуждение от Р-клеток к клеткам Пуркинье (третьему виду атипичных кардиомиоцитов), а так же сокращаться (благодаря наличию миофибрилл).
3. Клетки Пуркинье – образуют пучки Кис – Фляка, Гиса и волокна Пуркинье. Данные клетки передают возбуждение от промежуточных клеток к сократительным кардиомиоцитам. Располагаются между эндокардом и миокардом, встречаются в миокарде. Это крупные (по сравнению с типичными кардиомиоцитами) клетки овальной формы, со светлой цитоплазмой, округлым центрально или эксцентрично расположенным ядром, небольшим количеством разнонаправленных миофибрилл (данные клетки не имеют поперечной исчерченности), в них полностью отсутствуют Т-каналы, вставочные диски отсутствуют, но между клетками имеются щелевидные контакты (нексусы).

http://studopedia.su/10_21045_stroenie-miokarda.html

Строение миокарда: в чем его особенности

Миокард – это сердечная мышца, состоящая из одноядерных клеток, имеющих поперечное расположение. Именно оно обеспечивает высокие показатели прочности мышечного слоя, позволяет ему равномерно распределять нагрузку между всеми отделениями органа. Строение миокарда характеризуется независимым функционированием предсердий и желудочков. В среднем сердечном слое содержится пара разновидностей мышечной ткани: скелетная и гладкая. Скелетная обеспечила поперечно-полосатую исчерченность миокарда, а гладкая – клеточную структуру.
Если говорить про клеточное строение миокарда сердца, то здесь есть свои особенности. В структуру сердечной мышцы входят клетки, имеющие внутри себя эллипсовидные ядра. Последние с легкостью приспосабливаются к сократительным функциям ткани, могут уменьшаться, а после восстанавливать прежнюю форму и размеры. В ядрах находятся хромосомы. Они дают клеткам высокие показатели выносливости.
Еще одна интересная особенность строения мышечной ткани – тесная взаимосвязь между ее клетками. На их поверхности имеются небольшие отросточки, которые прочно цепляются друг за друга. Места таких соединений принято называть вставочными дисками. Здесь имеется многочисленное количество щелей, служащих для передачи импульса. Вследствие такого процесса по мышечной ткани проходит возбуждение, в результате чего она сокращается.
Что касается функциональных свойств миокарда, они заключаются в следующем:

  • возбудимость. Это реакция на какое-либо раздражение, которое может исходить извне и изнутри организма;
  • проводимость. Обеспечивает распространение возбуждения по всем отделам мышцы от места их возникновения;
  • сократимость. Как следствие возбуждения мышца начинает сокращаться;
  • автоматизм. Это свойство дает возможность органу сокращаться даже при условии отсутствия каких-либо раздражителей, стимулирующих более активную работу миокарда;
  • расслабление.

Сила сокращения миокарда зависит от нескольких факторов. Во-первых, это число актомиозиновых мостиков, образовавшихся в одно время. Второй фактор – число ионов кальция в саркоплазме. Оно прямо пропорционально силе сокращения сердечной мышцы.

Предсердия и желудочки

Мышечный слой желудочков сердца
Если говорить про строение миокарда предсердий и желудочков, то имеются некоторые отличительные характеристики. Первый момент – это мышечные слои. Они в данном случае разделяются фиброзными кольцами. При этом синхронность сокращения миокарда обеспечивается проводящей системой органа, общейу всех его отделов.
Мышечная ткань предсердий включает два слоя:
Первый слой общий. Здесь располагаются поперечные волокна. Последний – отделяется у каждого из предсердий. Он включает несколько разновидностей мышечных пучков:

  • продольные. Исходят от фиброзных колец;
  • круговые. Пучки охватывают устья вен, напоминая петлю.

Продольные пучки выгибаются внутрь ушек предсердий. Так они формируют гребенчатые мышцы. В этих моментах заключается строение миокарда предсердий.
Мышечный слой желудочков включает в свою структуру три слоя:

  • наружный – представляет собой мышечные скопления. Они состоят из косо-ориентированных волокон. Начинаются в области расположения фиброзных колец, а заканчиваются вверху сердца. Здесь они образуют завиток. Таким образом пучки переходят в глубокий слой сердечной мышцы. Наружный слой общий;
  • средний – его образуют круговые пучки волокон. Их еще называют циркулярными. Этот слой у желудочков разный;
  • внутренний – состоит из продольно располагающихся волокон. Обеспечивает образование сосочковых мышц. Также способствует формированию мясистых трабекул. Этот слой един для желудочков, играет весомую роль в формировании сократительной способности органа в целом.

Принцип работы предсердий и желудочков

Принцип работы сердца
Если говорить о работе предсердий и желудочков, то она построена таким образом: венозная кровь, поступая в предсердия, направляется ими в желудочки. Отсюда она поступает в артерии. Правый желудочек обеспечивает кровоснабжение легочных артерий, левый транспортирует кровь в аорту. Ее ответвления распространены по всему организму, обеспечивают кровоснабжение каждого его органа. Так можно сделать вывод, что сердце перекачивает венозную и артериальную кровь. Но за этот процесс отвечают разные отделы органа, поэтому кровь не перемешивается.
Что касается миокарда, то именно он определяет частоту сокращений сердца и их интенсивность. От этого зависит скорость и объемы перемещаемой крови, а, соответственно, качество снабжения органов питательными веществами и кислородом. Уровень возбудимости сердечной мышцы зависит от внешних и внутренних факторов, оказывающих влияние на человеческий организм. В стрессовых ситуациях, при повышенных физических нагрузках импульсы, подаваемые на клетки миокарда, заставляют его сокращаться с большей частотой и силой. Так кровь движется по организму быстрее и в больших объемах, чем в спокойном состоянии.

Когда появляются нарушения

Процессы, происходящие в миокарде и разных отделах сердца, могут нарушаться под постоянным действием негативных факторов, в роли которых чаще всего выступают какие-либо патологии или заболевания. Тогда теряется сократительная способность сердечной мышцы, снижается интенсивность ее сокращения. Следствием станут нарушения в работе определенных органов и их систем, разного рода болезни – чаще всего сосудистые или кардиологические. Наиболее широкое распространение получила гипоксия миокарда, ишемия.

http://medsosud.ru/miokarda/stroenie-miokarda-v-chem-ego-osobennosti.html

Строение сердца человека и особенности его работы

Человеческое сердце имеет четыре камеры: два желудочка и два предсердия. По левым отделам течет артериальная кровь, по правым — венозная. Основная функция — транспортная, сердечная мышца работает по типу насоса, перекачивая кровь к периферическим тканям, снабжая их кислородом и питательными веществами. При остановке сердечной деятельности диагностируют клиническую смерть. Если это состояние продолжается более 5 минут, отключается головной мозг, и человек умирает. В этом заключается вся важность правильной работы сердца, без него организм является нежизнеспособным.

Сердце является органом, состоящим в большей степени из мышечной ткани, оно обеспечивает кровоснабжение всех органов и тканей и имеет следующую анатомию. Находится в левой половине грудной клетки на уровне от второго до пятого ребра, средняя масса составляет 350 грамм. Основание сердца образовано предсердиями, легочным стволом и аортой, повернуто в сторону позвоночника, а сосуды, входящие в состав основания, фиксируют сердце в грудной полости. Верхушка формируется за счет левого желудочка и представляет собой закругленной формы область, обращенную вниз и влево в сторону ребер.
Кроме этого, в сердце выделяют четыре поверхности:

  • Переднюю или грудинно-реберную.
  • Нижнюю или диафрагмальную.
  • И две легочные: правую и левую.

Строение сердца человека достаточно сложно, но схематически описать его можно следующим образом. Функционально его делят на два отдела: правый и левый или венозный и артериальный. Четырехкамерное строение обеспечивает разделение кровоснабжения на малый и большой круг. Предсердия от желудочков отделяют клапаны, которые открываются только по направлению тока крови. Правый и левый желудочек отграничивает межжелудочковая перегородка, а между предсердиями располагается межпредсердная.
Стенка сердца имеет три слоя:

  • Эпикард — наружная оболочка, плотно срастается с миокардом, а сверху покрыта околосердечной сумкой — перикардом, который отграничивает сердце от других органов и за счет содержания небольшого количества жидкости между своими листками обеспечивает уменьшение трения при сокращении.
  • Миокард — состоит из мышечной ткани, которая уникальна по своему строению, она обеспечивает сокращение и осуществляет возбуждение и проведение импульса. Кроме того, некоторые клетки имеют автоматизм, т. е. способны самостоятельно генерировать импульсы, которые передаются по проводящим путям по всему миокарду. Происходит мышечное сокращение — систола.
  • Эндокард — покрывает внутреннюю поверхность предсердий и желудочков и образует клапаны сердца, которые являются складками эндокарда, состоящими из соединительной ткани с большим содержанием эластических и коллагеновых волокон.

http://vashflebolog.com/anatomy/stroenie-serdca.html

Строение сердца миокард

Сердце — центральный орган системы крово- и лимфообращения. Благодаря способности к сокращениям, сердце приводит в движение кровь.
Стенка сердца состоит из трех оболочек: эндокарда, миокарда и эпикарда.
Эндокард. Во внутренней оболочке сердца различают следующие слои: эндотелий, выстилающий изнутри полости сердца, и его базальную мембрану; подэндотелиальный слой, представленный рыхлой соединительной тканью, в которой много малодиффе-ренцированных клеток; мышечно-эласти-ческий слой, состоящий из гладкой мышечной ткани, между клетками которой в виде густой сети располагаются эластические волокна; наружный соединительнотканный слой, состоящий из рыхлой соединительной ткани. Эндотелий и подэндотелиальный слои аналогичны внутренней оболочке сосудов, мышечно-эластический является \»эквивалентом\» средней оболочки, а наружный соединительнотканный слой аналогичен наружной (адвентициальной) оболочке сосудов.
Поверхность эндокарда идеально гладкая и не препятствует свободному движению крови. В предсердно-желудочковой области и у основания аорты эндокард образует дупликатуры (складки), именуемые клапанами. Различают предсердно-желудочковые и желудочково-сосудистые клапаны. В местах прикрепления клапанов имеются фиброзные кольца. Клапаны сердца — это плотные пластинки волокнистой соединительной ткани, покрытые эндотелием. Питание эндокарда происходит путем диффузии веществ из крови, находящейся в полостях предсердий и желудочков.
Миокард (средняя оболочка сердца) — многотканевая оболочка, состоящая из поперчнополосатой сердечной мышечной ткани, межмышечной рыхлой соединительной ткани, многочисленных сосудов и капилляров, а также нервных элементов. Основной структурой является сердечная мышечная ткань, в свою очередь состоящая из клеток, формирующих и проводящих нервные импульсы, и клеток рабочего миокарда, обеспечивающих сокращение сердца (кардиомиоцитов). Среди клеток, формирующих и проводяших импульсы, в проводящей системе сердца различают три вида: Р-клетки (клетки-пейсмекеры), промежуточные клетки и клетки (волокна) Пуркиня.

Р-клетки — клетки-водители ритма, располагаются в центре синусного узла проводящей системы сердца. Они имеют полигональную форму и детерминированы на спонтанную деполяризацию плазмолеммы. Миофибриллы и органеллы общего значения в клетках-пейсмекерах выражены слабо. Промежуточные клетки — неоднородная по составу группа клеток, передают возбуждение от Р-клеток к клеткам Пуркиня. Клетки Пуркиня — клетки с небольшим количеством миофибрилл и полным отсутствием Т-системы, с большим по сравнению с рабочими сократительными миоцитами количеством циоплазмы. Клетки Пуркиня передают возбуждение от промежуточных клеток к сократительным клеткам миокарда. Они входят в состав пучка Гиса проводящей системы сердца.
Неблагоприятное влияние на клетки-пейсмекеры и клетки Пуркиня оказывают ряд лекарственных препаратов и другие факторы, способные привести к возникновению аритмий и блокады сердца. Наличие в сердце собственной проводящей системы чрезвычайно важно, поскольку она обеспечивает ритмичную смену систолических сокращений и диастол камер сердца (предсердий и желудочков) и работу его клапанного аппарата.
Основную массу миокарда составляют сократительные клетки — сердечные миоциты, или кардиомиоцитпы. Это клетки вытянутой формы с упорядоченной системой поперечноисчерченных миофибрилл, расположенных на периферии. Между миофибриллами находятся митохондрии с большим количеством крист. В миоцитах предсердий Т-система выражена слабо. Слабо развита в кардиомиоцитах гранулярная эндоплазматическая сеть. В центральной части миоцитов располагается ядро овальной формы. Иногда встречаются двуядерные кардиомиоциты. В мышечной ткани предсердий присутствуют кардиомиоциты с осмиофильными секреторными гранулами, содержащими натрийуретический пептид.
В кардиомиоцитах определяются включения гликогена, служащего энергетическим материалом сердечной мышцы. Содержание его в миоцитах левого желудочка больше, чем в других отделах сердца. Миоциты рабочего миокарда и проводящей системы соединяются между собой посредством вставочных дисков — специализированных межклеточных контактов. В области вставочных дисков прикрепляются актиновые сократительные миофиламенты, присутствуют десмосомы и щелевые контакты (нексусы).
Десмосомы способствуют прочному сцеплению сократительных миоцитов в функциональные мышечные волокна, а нексусы обеспечивают быстрое распространение волн деполяризации плазмолемм с одной мышечной клетки на другую и существование сердечного мышечного волокна как единой метаболической единицы. Характерным для миоцитов рабочего миокарда является присутствие анастомозирующих мостиков — взаимосвязанных фрагментов цитоплазм мышечных клетток разных волокон с находящимися в них миофибриллами. Тысячи таких мостиков превращают мышечную ткань сердца в сетчатую структуру, способную синхронно и эффективно сокращаться и выбрасывать из полостей желудочков необходимые систолические объемы крови. После перенесенных обширных инфарктов миокарда (острых ишемических некрозов стенки сердца), когда диффузно поражаются мышечная ткань сердца, система вставочных дисков, анастомозирующих мостиков и проводящая система, возникают нарушения ритма работы сердца вплоть до фибрилляции. В этом случае сократительная деятельность сердца превращается в отдельные несогласованные подергивания мышечных волокон и сердце не в состоянии выбрасывать нужные систолические порции крови в периферическую циркуляцию.
Миокард состоит в целом из высокоспециализированных клеток, утративших способность делиться митозом. Лишь в определенных участках предсердий наблюдаются митозы кардиомиоцитов (Румянцев П.П., 1982). Вместе с тем, для миокарда характерно наличие полиплоидных миоцитов, что значительно усиливает его рабочий потенциал. Явление полиплоидности наиболее часто наблюдается при компенсаторных реакциях миокарда, когда повышается нагрузка на сердце, и при патологии (недостаточности сердечных клапанов, заболеваниях легких и др.).
Сердечные миоциты в этих случаях резко гипертрофируются, и стенка сердца в том или ином отделе утолщается. В миокардиальной соединительной ткани заключена богато разветвленная сеть кровеносных и лимфатических капилляров, что обеспечивает постоянно работающую сердечную мышцу питанием и кислородом. В прослойках соединительной ткани имеются плотные пучки коллагеновых волокон, а также эластические волокна. В целом, эти соединительнотканные структуры составляют опорный скелет сердца, к которому прикрепляются сердечные мышечные клетки.
Сердце — орган, обладающий способностью к автоматизму сокращений. Оно может функционировать в известных пределах автономно. Однако в организме деятельность сердца находится под контролем нервной системы. В интрамуральных нервных узлах сердца находятся чувствительные вегетативные нейроны (клетки Догеля П-го типа), малые интенсивно флюоресцирующие клетки — МИФ-клетки и эффекторные вегетативные нейроны (клетки Догеля 1-го типа). МИФ-клетки рассматриваются как вставочные нейроны.
Эпикард — наружная оболочка сердца — представляет собой висцеральный листок околосердечной сумки (перикарда). Свободная поверхность эпикарда выстлана мезотелием так же, как и поверхность перикарда, обращенная в перикардиальную полость. Под мезотелием в составе этих серозных оболочек находится соединительнотканная основа из рыхлой волокнистой соединительной ткани.

http://meduniver.com/Medical/gistologia/106.html

Особенности строения сердца человека

Для того чтобы обеспечить адекватное питание внутренних органов, сердце перекачивает в день в среднем семь тонн крови. Его размер при этом равен сжатому кулаку. На протяжении жизни этот орган совершает приблизительно 2,55 миллиардов ударов. Окончательное формирование сердца происходит к 10 неделе внутриутробного развития. После рождения кардинально меняется вид гемодинамики – от питания плацентой матери к самостоятельному, легочному дыханию.
Читайте в этой статье

Строение сердца человека

Мышечные волокна (миокард) являются преобладающим видом клеток сердца. Они составляют его основную массу и находятся в среднем слое. Снаружи орган покрыт эпикардом. Он на уровне прикрепления аорты и легочной артерии заворачивается, направляясь книзу. Таким образом формируется околосердечная сумка – перикард. В нем содержится около 20 — 40 мл прозрачной жидкости, которая не дает листкам слипаться и травмироваться при сокращениях.
Внутренняя оболочка (эндокард) складывается вдвое в местах перехода предсердий в желудочки, устьев аортального и легочного ствола, образуя клапаны. Их створки крепятся к кольцу из соединительной ткани, а свободная часть движется потоком крови. Для того, чтобы не происходило выворачивание частей в предсердие, к ним присоединены нити (хорды), отходящие от сосочковых мышц желудочков.
Сердце имеет следующую структуру:

  • три оболочки – эндокард, миокард, эпикард;
  • перикардиальную сумку;
  • камеры с артериальной кровью – левое предсердие (ЛП) и желудочек (ЛЖ);
  • отделы с венозной кровью – правое предсердие (ПП) и желудочек (ПЖ);
  • клапаны между ЛП и ЛЖ (митральный) и трехстворчатый справа;
  • два клапана разграничивают желудочки и крупные сосуды (аортальный слева и легочной артерии справа);
  • перегородка делит сердце на правую и левую половину;
  • выносящие сосуды, артерии – пульмональная (венозная кровь из ПЖ), аорта (артериальная из ЛЖ);
  • приносящие, вены – легочные (с артериальной кровью) заходят в ЛП, полые вены впадают в ПП.

Рекомендуем прочитать статью о малых аномалиях развития сердца. Из нее вы узнаете о причинах патологии у детей, подростков и взрослых, симптомах проблемы и методах диагностики, лечении заболевания и прогнозе для больных.
А здесь подробнее о расположении сердца справа.

Внутренняя анатомия и особенности строения клапанов, предсердий, желудочков

Каждая часть сердца имеет свою функцию и анатомические особенности. В целом, более мощным является ЛЖ (по сравнению с правым), так как он с усилием продвигает кровь в артерии, преодолевая высокое сопротивление сосудистых стенок. ПП развито больше левого, оно принимает кровь из всего организма, а левое всего лишь из легких.

Правое предсердие

Получает кровь из полых вен. Рядом с ними располагается овальное отверстие, соединяющее ПП и ЛП в сердце плода. У новорожденного оно закрывается после открытия легочного кровотока, а затем полностью зарастает. В систолу (сокращение) венозная кровь проходит в ПЖ через трехстворчатый (трикуспидальный) клапан. ПП имеет достаточно мощный миокард и кубическую форму.

Левое предсердие

Артериальная кровь из легких проходит в ЛП по 4 легочным венам, а затем течет через отверстие в ЛЖ. Стенки ЛП в 2 раза тоньше, чем у правого. По форме ЛП похоже на цилиндр.

Правый желудочек

Он имеет вид перевернутой пирамиды. Емкость ПЖ составляет около 210 мл. В нем можно выделить две части – артериальный (легочной) конус и собственно полость желудочка. В верхней части расположены два клапана: трикуспидальный и пульмонального ствола.

Левый желудочек

Похож на перевернутый конус, его нижняя часть образует верхушку сердца. Толщина миокарда самая большая – 12 мм. Вверху размещены два отверстия – для соединения с аортой и ЛП. Оба они перекрываются клапанами – аортальным и митральным.

Трикуспидальный клапан

Правый предсердно-желудочковый клапан состоит из уплотненного кольца, ограничивающего отверстие, и створок, их может быть не 3, а от 2 до 6.
Функция этого клапана состоит в препятствии забросу крови в ПП при систоле ПЖ.

Клапан легочного ствола

Он не дает крови пройти обратно в ПЖ после его сокращения. В составе имеются заслонки, близкие по форме к полумесяцу. Посредине каждой есть узелок, герметизирующий смыкание.

Митральный клапан

Имеет две створки, одна находится спереди, а другая сзади. Когда клапан открыт, то кровь поступает из ЛП в ЛЖ. При сжимании желудочка его части смыкаются для того, чтобы обеспечить прохождение крови в аорту.

Клапан аорты

Образован тремя заслонками полулунной формы. Подобно пульмональному не содержит нитей, которые удерживают створки. В зоне расположения клапана аорта расширяется и имеет углубления, названные синусами.

Схема кругов кровообращения

Газообмен происходит в альвеолах легких. В них приходит венозная кровь из пульмональной артерии, выходящей из ПЖ. Несмотря на название, легочные артерии переносят кровь венозного состава. После отдачи углекислоты и насыщения кислородом по пульмональным венам кровь проходит в ЛП. Так формируется малый круг кровотока, названный легочным.
Большой круг охватывает весь организм в целом. Из ЛЖ артериальная кровь разносится по всем сосудам, питая ткани. Лишенная кислорода, венозная кровь течет из полых вен в ПП, затем в ПЖ. Круги замыкаются между собой, обеспечивая непрерывный поток.
Для того чтобы кровь попала в миокард, она должна пройти вначале в аорту, а затем в две венечные артерии. Они названы так из-за формы разветвлений, напоминающий корону (венец). Венозная кровь из сердечной мышцы преимущественно поступает в венечный синус. Он открывается в правое предсердие. Этот круг кровообращения считается третьим, коронарным.
Смотрите на видео о строении сердца человека:

Чем особенное строение сердца у ребенка

До шестилетнего возраста сердце имеет форму шара за счет больших предсердий. Его стенки легко растягиваются, они гораздо тоньше, чем у взрослых. Постепенно формируется сеть сухожильных нитей, фиксирующих створки клапанов и сосочковых мышц. Полное развитие всех структур сердца оканчивается к 20 годам.
До двух лет сердечный толчок образует правый желудочек, а затем и часть левого. По скорости роста до 2 лет лидируют предсердия, а после 10 – желудочки. До десяти лет ЛЖ опережает правый.

Основные функции миокарда

Сердечная мышца отличается по строению от всех других, так как имеет несколько уникальных свойств:

  • Автоматизм – возбуждение под действием собственных биоэлектрических импульсов. Вначале они формируются в синусовом узле. Он – главный водитель ритма, генерирует сигналы около 60 — 80 за минуту. Нижележащие клетки проводящей системы – это узлы 2 и 3 порядка.
  • Проводимость — импульсы от места образования могут распространяться от синусового узла к ПП, ЛП, предсердно-желудочковому узлу, по миокарду желудочков.
  • Возбудимость— в ответ на внешние и внутренние раздражители миокард активизируется.
  • Сократимость – способность сокращаться при возбуждении. Эта функция и создает насосные возможности сердца. Сила, с которой миокард реагирует на электрический стимул, зависит от давления в аорте, степени растяжения волокон в диастолу, объема крови в камерах.

Как работает сердце

Функционирование сердца проходит три этапа:

  • Сокращение ПП, ЛП и расслабление ПЖ и ЛЖ с открыванием клапанов между ними. Переход крови в желудочки.
  • Систола желудочков – раскрываются клапаны сосудов, кровь течет в аорту и легочную артерию.
  • Общее расслабление (диастола) – кровь заполняет предсердия и надавливает на клапаны (митральный и трехстворчатый) вплоть до их раскрывания.
  • В период сокращения желудочков захлопнуты давлением крови клапаны между ними и предсердиями. В диастолу давление в желудочках падает, оно становится ниже, чем в крупных сосудах, тогда части пульмонального и аортального клапана смыкаются, чтобы поток крови не вернулся обратно.
    Рекомендуем прочитать статью о врожденных пороках сердца. Из нее вы узнаете о причинах развития патологии, классификации и признаках пороков, проведении диагностики и вариантах лечения.
    А здесь подробнее об аускультации сердца.
    Сердце обеспечивает продвижение крови по большому и малому кругу благодаря согласованной работе предсердий, желудочков, магистральных сосудов и клапанов. Миокард обладает способностью вырабатывать электрический импульс, проводить его от узлов автоматизма до клеток желудочков. В ответ на воздействие сигнала мышечные волокна переходят в активное состояние и сокращаются. Сердечный цикл состоит из систолического и диастолического периода.
    Важную функцию играет коронарное кровообращение. Его особенности, схему движения по малому кругу, сосуды, физиологию и регуляцию изучают кардиологи при подозрении на проблемы.
    Непростая проводящая система сердца обладает множеством функций. Ее строение, в котором есть узлы, волокна, отделы, а также другие элементы помогают в общей работе сердца и всей системе кроветворения в организме.
    Из-за тренировок сердце спортсмена отличается от обычного человека. Например, по ударному объему, ритму. Однако у бывшего спортсмена или же при приеме стимуляторов могут начаться заболевания — аритмия, брадикардия, гипертрофия. Чтобы этого не допустить, стоит пить специальные витамины и препараты.
    Выявить сердце справа может кардиолог в довольно взрослом возрасте. Такая аномалия зачастую не представляет угрозы для жизни. Люди, у которых сердце справа, просто должны предупреждать врача, например, перед проведение ЭКГ, так как данные будут немного отличными от стандартных.
    В норме размер сердца человека меняется на протяжении жизни. Например, у взрослого и детей оно может отличаться в десятки раз. У плода же гораздо меньше, чем у ребенка. Может отличаться размер камер и клапанов. Что если ставят маленькое сердце?
    При подозрении на любое отклонение назначается рентген сердца. Он может выявить тень в норме, увеличение размера органа, пороки. Иногда проводится рентгенография с контрастированием пищевода, а также в одной-трех и иногда даже четырех проекциях.
    Выявить МАРС сердца можно у детей до трех лет, подростков, взрослых. Обычно такие аномалии проходят практически незамеченно. Для исследований применяют УЗИ и другие методы диагностики строения миокарда.
    При наличии лишней перегородки может получиться трехпредсердное сердце. Что это означает? Насколько опасна неполная форма у ребенка?
    Выполняется МРТ сердца по показателям. И даже детям делают обследование, показаниями для которого становятся пороки сердца, клапанов, коронарных сосудов. МРТ с контрастированием покажет способность миокарда накапливать жидкость, выявит опухоли.

    http://cardiobook.ru/stroenie-serdca-cheloveka/

    Строение сердца миокард

    Сердце — мышечный орган, обеспечиващий циркуляцию крови за счет ритмических сокращений.
    Стенка сердца состоит из 3-х оболочек: 1) внутренняя — эндокард (endocardium), 2) средняя — миокард(myocardium) и 3) наружная — эпикард (epicardium).
    Тканевой состав эндокарда (Рис.1) соответствует строению стенки сосуда и представлен: эндотелием (1) с субэндотелиальным (2) слоем (соответствующими t. intima), мышечно-эластическим (3) слоем (соответствующим t.media) и наружным (4) соединительнотканным (соответствующим t. externa). Мелкие кровеносные сосуды (5) расположены только в наружном слое эндокарда, т.к. питание его внутреннего и среднего слоев происходит диффузно за счет крови, находящейся в камерах сердца.

    Эндокард принимает участие в образовании клапанов (предсерсердно-желудочковых, а также между желудочками и кровеносными сосудами, отходящими от сердца — аортой и легочной артерией).
    Атрио-вентрикулярные (предсерсердно-желудочковые) клапаны представляют собой складки эндокарда (Рис. 2), имеющие две поверхности: I — предсердную (гладкую) и II — желудочковую (неровную, с выростами, от которых начинаются сухожильные нити — chordae tendineae). Свободная поверхность клапана со всех сторон покрыта эндотелием (1), под которым расположен субэндотелиальный (2) слой, богатый гликозаминогликанами.

    Субэндотелиальный слой со стороны предсердия имеет густое сплетение эластических волокон, а со стороны желудочков — небольшое их количество. В основании створки клапана расположены волокна миокарда с кровеносными сосудами (3).
    Миокард (Рис. 3) состоит из кардиомиоцитов, образующих функциональные волокна, видимых на продольном (1) и поперечном срезах (2). Между волокнами, в прослойках рыхлой соединительной ткани проходят кровеносные и лимфатические сосуды (3) и нервы. Миокард хорошо кровоснабжается. На каждый кардиомиоцит приходится 2-3 капилляра.

    Выделяют 3 вида кардиомиоцитов: I — сократительные (типические или рабочие), II — проводящие (атипические),III — секреторные.
    Сократительные кардиомиоциты составляющие основную массу миокарда имеют 1-2 ядра, расположенные в центре клетки, а миофибрилы — на периферии. Форма клеток в разных отделах сердца разная: в желудочках — цилиндрическая, предсердиях — неправильная (отросчатая). При длительных повышенных нагрузках они способны сильно гипертрофироваться.
    На рисунках 4,5,6,7 и 8 показано соединение рабочих кардиомиоцитов между собой в одном ряду — за счетвставочных дисков (1), а между рядами — за счет анастомозов (2).

    Рис. 4. Схема контактов между рабочими кардиомиоцитами.
    1 — вставочный диск, 2 — анастомоз.

    Рис. 5. Схема строения вставочного диска.
    1 — десмосома; 2 – промежуточный контакт (место вплетения миофибрилл в цитолемму); 3 – щелевой или нексус (обеспечивающий быстрое проведение импульсов от клетки к клетке); 4 — миофибрилла.
    Рис. 6. Электронная микрофотография вставочного диска

    Рис. 7. Гистологический препарат миокарда.
    1 — вставочный диск, 2 — анастомоз.

    Рис. 8. Сканирующая фотография миокарда.
    II — Проводящие кардиомиоциты формируют и проводят импульсы к сократительным кардиомиоцитам. Проводящая система сердца (Рис. 9 и 10) включает: 1 — предсердный (синусный) узел, 2 — межузловые связующие пучки, 3 — предсердно-желудочковый (атрио-вентрикулярный) узел, 4 — пучок Гиса, 5 — левая и 6 — правая ножки Пучка Гисса, 7 — волокна Пуркинье.

    Рис. 9. Места локализации проводящей системы сердца.

    Рис. 10. Схема проводящей системы сердца.
    Различают 3 разновидности проводящих кардиомиоцитов: а — пейсмекерные клетки (Р-клетки) или водители ритма (Рис. 11), расположенные в центре предсердного (в преобладающем количестве) и предсердно-желудочкового узлов (в меньшем количестве). Они имеют полигональную форму и небольшие размеры (8-10 мкм). Малочисленные миофибриллы расположены неупорядоченно.

    Рис. 11. Схема строения Р-клеток проводящей системы сердца.
    б — переходные кардиомиоциты (Рис. 12) расположены по периферии предсердного (в меньшем количестве) и предсердно-желудочкового (в преобладающем количестве) узлов. Клетки узкие, вытянутой формы, в них более развиты миофибриллы, расположенные в большей степени параллельно между собой. Выполняют функцию передачи возбуждения от Р-клеток к клеткам пучка Гисса и к рабочим кардиомиоцитам.

    Рис. 12. Схема строения переходных кардиомиоцитов проводящей системы сердца.
    в — клетки пучка Гиса (Рис. 13а) и волокон Пуркинье (Рис. 13б) расположены под эндокардом и в толще миокарда желудочков, имеют крупные размеры (15 мкм и более). Миофибрилы тонкие и малочисленные без определенного порядка располагаются главным образом по периферии клетки.

    Рис. 13. Схема строения кардиомиоцитов пучка Гиса (а) и волокон Пуркинье (б) проводящей системы сердца.
    III — Cекреторные кардиомиоциты локализовны в предсердиях. Клетки имеют отросчатую форму, слаборазвитый сократительный и хорошо развитый синтетический аппарат. Плотные секреторные гранулы содержат пептидныйгормон предсердный натрий уретический фактор (ПНФ), стимулирующий диурез, натрийурез и расширение сосудов. ПНФ вызывает снижение АД, угнетает секрецию вазопрессина, альдостерона, кортизола. Отмечена гиперсекреция ПНФ у больных гипертонической болезнью и коронарной недостаточностью.
    СТРОЕНИЕ ЭПИКАРДА И ПЕРИКАРДА
    Эпикард (Рис. 14) и окружающий его перикард покрывают сердце снаружи и являются дупликатурами серозной оболочки, между которыми расположена полость околосердечной сумки. Соединительнотканная основа обеих оболочек содержит большое количество жировых клеток (2), крупные (в отличае от наружнего слоя эндокарда и миокарда) кровеносные сосуды (1), нервные волокона (3) и обращены навстречу друг к другу мезотелием (4).

    Рис. 14. Схема строения эпикарда.
    Строение стенки сердца

    I Эндокард: 1 — эндотелий; 2 – субэндотелиальный соединительнотканный слой;3 – мышечно- эластический слой; 4 – наружный соединительнотканный слой; 5 – проводящие кардиомиоциты.
    II Миокард: 6 — сосуды; 7 – сократительные кардиомиоциты.
    III Эпикарад: 8 – жировая ткань; 9 — мезотелий.
    Закладка сердца происходит на 3 неделе внутриутробного развития, когда в шейном отделе над желточным мешком(Рис. 1) из мезенхимы (6) возникают две эндокардиальные трубки (7) .
    Из висцерального листка мезодермы формируются миоэпикардиальные пластинки (4), которые окружают эндокардиальные трубки.

    Рис.1. Образование парных закладок сердца.
    1 — эктодерма; 2 — сомит; 3 — париетальный листок мезодермы; 4 — миоэпикардиальная пластинка; 5 — целом (вторичная полость тела); 6 — клетки мезенхимы; 7 — парные мезенхимные трубки (зачатки эндокарда); 8 — хорда; 9 — зачаток кишечной трубки.
    В последующем парные сердечные труюки смыкаются (Рис. 2), их внутренние стенки исчезают (Рис. 3), в результате образуется одна двухслойная сердечная трубка (однокамерное сердце), которая соединяется с развивающимися кровеносными сосудами.

    Рис.2. Сближение парных закладок сердца.
    1 — нервный желобок; 2 — сомит; 3 — формирование эктодермальных туловищных складок ; 4 — миоэпикардиальные пластинки; 5 — целом (вторичная полость тела); 6 — клетки мезенхимы; 7 — сближение мезенхимных трубок (зачатков эндокарда); 8 — нисходящая аорта (парная) ; 9 — образование головной кишки.

    Рис. 3. Слияние парных закладок сердца.
    1 — нервная трубка; 2 — сомит; 3 — формирование эктодермальных туловищных складок ; 4 — закладка миокарда и эпикарда; 5 — целом (вторичная полость тела); 6 — клетки мезенхимы; 7 — формирование единой эндокардиальной трубки; 8 — нисходящая аорта (парная) ; 9 — зачаток головной кишки.
    Из миоэпикардиальной пластинки дифференцируются веретенообразные клетки —кардиомиобласты, которые быстро устанавливают контакт друг с другом и образуют клеточные тяжи – трабекулы. Таким образом, на ранних этапах\» онтогенеза формируется \»трабекулярный миокард\», питание которого обеспечивается кровью из сердечных полостей (пока не развиты питающие кровеносные сосуды). Увеличение массы сердца во внутриутробном развитии идет за счет энергичного размножения кардиомиоцитов митозами и увеличения их размеров, дифференцировки сократительного аппарата, увеличения количества митохондрий и других органелл. Во второй половине внутриутробного развития стенки сердца представлены \»компактным миокардом\», имеющим значительное количество капилляров.
    После рождения проходит длительный период, пока структуры сердца не достигнут дефинитивного состояния. В это время увеличивается масса органа и значительно изменяется его строение. Происходит закрытие овального отверстия и боталлова протока. У новорожденных стенка сердца тонкая, легко растяжимая, эластический аппарат развит слабо. Волокна миокарда тонкие, состоят из мелких клеток (Рис. 3).

    Рис.3. Миокард новорожденного (а) и взрослого (б) человека.
    В период после рождения до 2 лет отмечается быстрое увеличение толщины волокон, объема ядер и количества миофибрилл, отчетливой становится их поперечнополосатая исчерченность; волокна миокарда расположены рыхло, соединительной ткани и жировых клеток мало; от 2 до 10 лет происходит дальнейшая дифференцировка и рост сердечной мышцы, увеличивается ее толщина, кардиомиоциты полиплоидизируются; в пубертатном периоде темп изменений вновь нарастает (особенно у девочек): резко увеличивается диаметр волокон, завершается дифференцировка внутриорганных кровеносных сосудов, нервного аппарата и клапанов.
    Дифференцировка кардиомиоцитов на атриальные и вентрикулярные происходит тогда, когда сердечная трубка уже сегментирована на атриальный (задний) и вентрикулярный (передний) домены.
    Миокард и мезотелий эпикарда развиваются из висцерального листка спланхнотома, эндокард, соединительная ткань миокарда и эпикарда — из мезенхимы.
    Закладки отдельных камер сердца обнаруживаются в сердечной трубке сначала в виде утолщений миокарда, а затем в виде дивертикулов трубки. Атриальные и вентрикулярные дивертикулы, зачатки будущих камер сердца, располагаются вдоль кардиальной трубки в последовательных ее сегментах.
    Предшественник миокардиального кольца обнаруживается уже в сердце 5-недельного эмбриона человека. Согласно данным de Jong et al. ранние компартменты для правого и левого желудочков формируются из соседних отделов первичной сердечной трубки как результат образования миокардиальных карманов, содержащих трабекулы.

    Рис. 4. Формирование вентрикулярной проводящей системы в развивающемся сердце примерно на 5-ой (А), 6-ой (Б) и 7-ой (В) неделе развития. АО — аорта, ЛС — легочный ствол, ЛЖ — левый желудочек, ГГЖ — правый желудочек, ЛП — левое предсердие, ГШ — правое предсердие. Стрелками показано направление кровотоков в развивающемся сердце. (Модифицировано по Moorman et al., 1997 )
    Межжелудочковая перегородка развивается в результате нарастания (apposition) вентрикулярных миоцитов наружной стороны в месте расположения левой межжелудочковой борозды, это приводит к образованию отверстия примерно по средине сердечной трубки, называемого первичным межжелудочковым отверстием, которое располагается между внутренним изгибом и верхушкой межжелудочковой перегородки (Рис. 4 А). Положение первичного межжелудочкого отверстия таково, что оно демаркирует вход в правый желудочек и выход из левого желудочка. Это его положение сохраняется и в полностью сформированном сердце.
    В ходе формирования межжелудочковой перегородки первичный атриовентикулярный канал подразделяется в результате выростов и слияния эндокардиальных подушек. При этом правая часть атриовентрикулярного соединения оказывается физически отделенной от выхода из левого желудочка (Рис.4 Б и В). Это происходит благодаря росту тракта оттока в левую сторону так, что часть первичного межжелудочкового кольца миокарда, которая также является и частью проксимального отдела тракта оттока, расширяется влево и формирует субаортальный выход. При этом в результате роста атриовентрикулярного канала вправо, часть первичного межжелудочкого кольца миокарда, которая оказывается также частью нижнего края правого атриовентрикулярного соединения, расширяется вправо и формирует нижний край правого атриовентрикулярного соединения, где и располагается потом правый атриовентрикулярный кольцевой пучек проводящей системы.
    Предполагается, что миокардиальное кольцо можно рассматривать как отдельный сегмент первичной кардиальной трубки, разделяющий зачатки двух желудочков de Jong et а. Это миокардиальное кольцо состоит из специализированной кардиальной ткани, выполняет функцию сфинктера в сердце пока не будут сформированы клапаны. В пользу этого предположения в работе этих авторов приводятся характерные для данного сегмента отличия от миокарда обоих желудочков. С этой целью подробно рассматривается молекулярный фенотип вентрикулярной проводящей системы,производной этого миокардиального кольца (сегмента).
    Межжелудочковая борозда, первичное межжелудочковое отверстие и обрамляющее его микардиальное кольцо служат границей, разделяющей два соседних сегмента сердечной трубки, зачатки будущих левого и правого желудочков сердца. Возникающая в этом месте межжелудочковая перегородка обусловливает окончательное разделение желудочков. Труднее понять трансформацию верхней части миокардиального кольца, так как это связано с образованием самостоятельного выхода из левого желудочка, своеобразного шунта, позволяющего \»перепрыгнуть\» через соседний сегмент (сегмент правого желудочка). Ясно, что без образования петли сердечной трубки образование шунта для левого желудочка, невозможно. Этот процесс шунтирования происходит параллельно с формированием атриовентрикулярной перегородки, ведущего к образованию двух атриовентрикулярных отверстий и разделению кровотоков.
    Далее сердечная трубка образует S-образный изгиб и сердце начинает сокращаться. Двухкамерное сердце, формируется в результате глубокой перетяжки между венозным и артериальным отделами, когда существует один большой круг кровообращения.
    Трехкамерное сердце появляется на 4 неделе внутриутробного развития при образовании складки, делящей общее предсердие (венозное русло) на два — правое и левое. При этом в перегородке остается отверстие (овальное окно), через которое кровь из правого предсердия переходит в левое.
    Четырехкамерное сердце формируется на 5 неделе внутриутробного развития. В общем желудочке образуется растущая вверх перегородка, разделяющая его на правый и левый. Общий артериальный ствол также делится на два отдела: аорта и легочный ствол, сообщающиеся соответственно с левым и правым желудочками.
    Проводящая система сердца формируется у плодов на 5 месяце внутриутробного развития, в это время их ЭКГ в основных чертах напоминает таковую у взрослого. Нервных элементов в сердце эмбриона много, причем скорость их дифференцировки выше, чем у мышц.
    До 1,9% новорожденных имеет те или иные формы врожденных пороков сердца, возникших в результате нарушений формообразовательных процессов во внутриутробном развитии. Наиболее часто встречаются дефект межжелудочковой (30-40%) и межпредсердной (7%) перегородок. В участках ветвления коронарных артерий новорожденных выявлены особые утолщения интимы — мышечно-эластические подушки. Они происходят из недифференцированных гладких миоцитов средней оболочки, мигрирующих через фенестры во внутренней эластической мембране и занимающих субэндотелиальное положение. Здесь они вырабатывают эластин, основное вещество и небольшое количество коллагена, сюда могут проникать также моноциты, дифференцирующиеся в макрофаги. В первые десятилетия жизни утолщения интимы становятся повсеместными в коронарных артериях. Именно в этих участках артериальной стенки в более зрелом возрасте наиболее часто отмечено развитие атеросклеротического процесса.
    Кровеносные сосуды (Рис. 1) представлены: артериями, венами и сосудами микроциркулятроного русла (МЦР).

    Рис. 1. Органные сосуды.
    Стенки кровеносных сосудов сходны по строению (Рис. 2.) и представлены тремя оболочками:
    I — Внутреней (tunica interna или интима) состоящей из: 1 — эндотелия и 2 — субэндотелиального (подэндотелиального) слоя
    II — Средней (tunica media) представленой миоцитами (5), коллагеновым и эластическими волокнами (4).
    III — Наружной (tunica externa или адвентиция) состоящей из рыхлой волокнистой соединительной ткани.

    Рис. 2. Схема строения стенки артерии и вены среднего калибра.
    Основные морфологические отличия между артериями и венами:

    http://studfiles.net/preview/1779095/

    1 звезда2 звезды3 звезды4 звезды5 звезд (Поки оцінок немає)
    Загрузка...
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

    Adblock detector